L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (1.86 − 1.23i)5-s + (−1.73 + 2i)7-s − 0.999i·8-s + (−2.23 + 0.133i)10-s + (−2.5 − 4.33i)11-s − i·13-s + (2.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + (1.73 − i)17-s + (3.5 − 6.06i)19-s + (1.99 + i)20-s + 5i·22-s + (−2.59 − 1.5i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.834 − 0.550i)5-s + (−0.654 + 0.755i)7-s − 0.353i·8-s + (−0.705 + 0.0423i)10-s + (−0.753 − 1.30i)11-s − 0.277i·13-s + (0.668 − 0.231i)14-s + (−0.125 + 0.216i)16-s + (0.420 − 0.242i)17-s + (0.802 − 1.39i)19-s + (0.447 + 0.223i)20-s + 1.06i·22-s + (−0.541 − 0.312i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0667 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0667 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.701263 - 0.749744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.701263 - 0.749744i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.86 + 1.23i)T \) |
| 7 | \( 1 + (1.73 - 2i)T \) |
good | 11 | \( 1 + (2.5 + 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 + i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.59 + 1.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-3 - 5.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.33 - 2.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9T + 41T^{2} \) |
| 43 | \( 1 + 10iT - 43T^{2} \) |
| 47 | \( 1 + (11.2 + 6.5i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.866 - 0.5i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.19 + 3i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (3.46 - 2i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7 - 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10iT - 83T^{2} \) |
| 89 | \( 1 + (5 - 8.66i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19160946893495040506144692106, −9.502675774549331498379141986042, −8.753470721463080884981135232691, −8.095746143156062731131868243220, −6.75595947008619736698561866764, −5.80261592840217238055039432541, −5.04574005307900156661692512194, −3.22861360073424968778191563834, −2.44304109456564433177194848731, −0.69925457155572616624206529857,
1.58824843346642824685152550092, 2.90026453874013755066336085531, 4.34186435722966545100019252352, 5.71020202249618517939430954686, 6.38891786870038457315112871476, 7.45870583635937468384835465786, 7.86979499082999213797474107311, 9.612424133156071647711089862181, 9.735746345561886869117763040677, 10.43103719965840888221508702155