L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (1.86 + 1.23i)5-s + (−1.73 − 2i)7-s + 0.999i·8-s + (−2.23 − 0.133i)10-s + (−2.5 + 4.33i)11-s + i·13-s + (2.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (1.73 + i)17-s + (3.5 + 6.06i)19-s + (1.99 − i)20-s − 5i·22-s + (−2.59 + 1.5i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.834 + 0.550i)5-s + (−0.654 − 0.755i)7-s + 0.353i·8-s + (−0.705 − 0.0423i)10-s + (−0.753 + 1.30i)11-s + 0.277i·13-s + (0.668 + 0.231i)14-s + (−0.125 − 0.216i)16-s + (0.420 + 0.242i)17-s + (0.802 + 1.39i)19-s + (0.447 − 0.223i)20-s − 1.06i·22-s + (−0.541 + 0.312i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0667 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0667 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.701263 + 0.749744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.701263 + 0.749744i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.86 - 1.23i)T \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 11 | \( 1 + (2.5 - 4.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - iT - 13T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 - 6.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.59 - 1.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-3 + 5.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.33 + 2.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9T + 41T^{2} \) |
| 43 | \( 1 - 10iT - 43T^{2} \) |
| 47 | \( 1 + (11.2 - 6.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.19 - 3i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (3.46 + 2i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7 + 12.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 10iT - 83T^{2} \) |
| 89 | \( 1 + (5 + 8.66i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43103719965840888221508702155, −9.735746345561886869117763040677, −9.612424133156071647711089862181, −7.86979499082999213797474107311, −7.45870583635937468384835465786, −6.38891786870038457315112871476, −5.71020202249618517939430954686, −4.34186435722966545100019252352, −2.90026453874013755066336085531, −1.58824843346642824685152550092,
0.69925457155572616624206529857, 2.44304109456564433177194848731, 3.22861360073424968778191563834, 5.04574005307900156661692512194, 5.80261592840217238055039432541, 6.75595947008619736698561866764, 8.095746143156062731131868243220, 8.753470721463080884981135232691, 9.502675774549331498379141986042, 10.19160946893495040506144692106