L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1.52 + 1.63i)5-s + (2.33 − 1.23i)7-s + (−0.707 + 0.707i)8-s + (−0.0743 + 2.23i)10-s + 5.73·11-s + (−3.41 − 3.41i)13-s + (2.52 + 0.781i)14-s − 1.00·16-s + (2.57 − 2.57i)17-s − 1.85·19-s + (−1.63 + 1.52i)20-s + (4.05 + 4.05i)22-s + (−6.46 + 6.46i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.683 + 0.730i)5-s + (0.884 − 0.466i)7-s + (−0.250 + 0.250i)8-s + (−0.0234 + 0.706i)10-s + 1.72·11-s + (−0.946 − 0.946i)13-s + (0.675 + 0.208i)14-s − 0.250·16-s + (0.624 − 0.624i)17-s − 0.424·19-s + (−0.365 + 0.341i)20-s + (0.864 + 0.864i)22-s + (−1.34 + 1.34i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.535 - 0.844i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10152 + 1.15615i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10152 + 1.15615i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.52 - 1.63i)T \) |
| 7 | \( 1 + (-2.33 + 1.23i)T \) |
good | 11 | \( 1 - 5.73T + 11T^{2} \) |
| 13 | \( 1 + (3.41 + 3.41i)T + 13iT^{2} \) |
| 17 | \( 1 + (-2.57 + 2.57i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.85T + 19T^{2} \) |
| 23 | \( 1 + (6.46 - 6.46i)T - 23iT^{2} \) |
| 29 | \( 1 - 3.47iT - 29T^{2} \) |
| 31 | \( 1 + 0.469iT - 31T^{2} \) |
| 37 | \( 1 + (-0.574 - 0.574i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.03iT - 41T^{2} \) |
| 43 | \( 1 + (-6.17 + 6.17i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.85 - 3.85i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.85 + 1.85i)T - 53iT^{2} \) |
| 59 | \( 1 + 13.3T + 59T^{2} \) |
| 61 | \( 1 - 8.53iT - 61T^{2} \) |
| 67 | \( 1 + (4.46 + 4.46i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.13T + 71T^{2} \) |
| 73 | \( 1 + (7.80 + 7.80i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.16iT - 79T^{2} \) |
| 83 | \( 1 + (-1.77 - 1.77i)T + 83iT^{2} \) |
| 89 | \( 1 - 9.12T + 89T^{2} \) |
| 97 | \( 1 + (-0.0119 + 0.0119i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74095406273984254032980261843, −9.864349638423290574226746037466, −9.034442699404014707860791109564, −7.71798115416903589611621685938, −7.23943341991003289896924106989, −6.16985740808422592994539135622, −5.38131311479610563436005749064, −4.24305094545786786877288557409, −3.18127295273226963847190692954, −1.69343461731589521466703354349,
1.45302494088623170524881812365, 2.28499887245081888306289350857, 4.15364496848223703105821280580, 4.63371448625823558299080429943, 5.88104951366655530589371861149, 6.51243694157367193368616025360, 8.011778886964802840014850194265, 8.949134830701367124070514388558, 9.558317455994286798858381592933, 10.45787782081760361654643497789