L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.158 + 2.23i)5-s + (−2.47 − 0.941i)7-s + (−0.707 + 0.707i)8-s + (−1.46 + 1.68i)10-s − 2.82·11-s + (4.23 + 4.23i)13-s + (−1.08 − 2.41i)14-s − 1.00·16-s + (−3.69 + 3.69i)17-s − 1.39·19-s + (−2.23 + 0.158i)20-s + (−2.00 − 2.00i)22-s + (−0.414 + 0.414i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.0708 + 0.997i)5-s + (−0.934 − 0.355i)7-s + (−0.250 + 0.250i)8-s + (−0.463 + 0.534i)10-s − 0.852·11-s + (1.17 + 1.17i)13-s + (−0.289 − 0.645i)14-s − 0.250·16-s + (−0.896 + 0.896i)17-s − 0.321·19-s + (−0.498 + 0.0354i)20-s + (−0.426 − 0.426i)22-s + (−0.0863 + 0.0863i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.865 - 0.501i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.865 - 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.345494 + 1.28631i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.345494 + 1.28631i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.158 - 2.23i)T \) |
| 7 | \( 1 + (2.47 + 0.941i)T \) |
good | 11 | \( 1 + 2.82T + 11T^{2} \) |
| 13 | \( 1 + (-4.23 - 4.23i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.69 - 3.69i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.39T + 19T^{2} \) |
| 23 | \( 1 + (0.414 - 0.414i)T - 23iT^{2} \) |
| 29 | \( 1 - 0.828iT - 29T^{2} \) |
| 31 | \( 1 + 1.53iT - 31T^{2} \) |
| 37 | \( 1 + (-2.58 - 2.58i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.69iT - 41T^{2} \) |
| 43 | \( 1 + (-4 + 4i)T - 43iT^{2} \) |
| 47 | \( 1 + (-1.08 + 1.08i)T - 47iT^{2} \) |
| 53 | \( 1 + (-8.24 + 8.24i)T - 53iT^{2} \) |
| 59 | \( 1 + 9.23T + 59T^{2} \) |
| 61 | \( 1 - 6.43iT - 61T^{2} \) |
| 67 | \( 1 + (-10.4 - 10.4i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.585T + 71T^{2} \) |
| 73 | \( 1 + (4.14 + 4.14i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.07iT - 79T^{2} \) |
| 83 | \( 1 + (-5.31 - 5.31i)T + 83iT^{2} \) |
| 89 | \( 1 - 11.3T + 89T^{2} \) |
| 97 | \( 1 + (-4.59 + 4.59i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.91183366436586592193495591551, −10.25022738737875949426528174187, −9.155109492262162926762759279640, −8.206999106036984476821497151304, −7.10345545359887299538368294879, −6.48282373581259059879686464835, −5.83869117838671226006658359118, −4.27045996579365237105478331308, −3.52270719826472511609890152611, −2.29691410398423358224731106072,
0.59415950815536196049982958232, 2.38282608875464581931814794341, 3.46404436377540382081902565716, 4.64535777917241583771524069681, 5.58891965643535954393360631435, 6.27202445863378307005592449176, 7.68226934564017030283846026555, 8.720345021828329130934484930333, 9.358841768592333675025758746529, 10.35999363213274111087614648796