L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.5 + 2.59i)7-s − 0.999·8-s + (0.499 − 0.866i)10-s + (−1 + 1.73i)11-s + (−2 + 1.73i)14-s + (−0.5 − 0.866i)16-s + (−2 + 3.46i)17-s + (3 + 5.19i)19-s + 0.999·20-s − 1.99·22-s + (1.5 + 2.59i)23-s + (−0.499 + 0.866i)25-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.223 − 0.387i)5-s + (0.188 + 0.981i)7-s − 0.353·8-s + (0.158 − 0.273i)10-s + (−0.301 + 0.522i)11-s + (−0.534 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.485 + 0.840i)17-s + (0.688 + 1.19i)19-s + 0.223·20-s − 0.426·22-s + (0.312 + 0.541i)23-s + (−0.0999 + 0.173i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.625952 + 1.26269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.625952 + 1.26269i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 11 | \( 1 + (1 - 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (2 - 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 - 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7T + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5 + 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.5 + 7.79i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 + (-2 + 3.46i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5 + 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7T + 83T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08369563708178282558111522483, −9.774994158027101588594055804488, −9.082381216445058600516055857688, −8.086609108709684876163148827427, −7.54365967889550346917120599562, −6.20016047228734992527637508116, −5.52829800016648566272453472331, −4.57043987330343540565749871491, −3.45034626536074867160129536224, −1.93748209109471200044832615615,
0.69351362280457246969452760796, 2.49110987359881786934388463418, 3.54244130032619760571013131888, 4.54816319253224974207564139304, 5.50623407330431181851177413022, 6.84842748572491860166344025626, 7.45965657095936610689018803106, 8.692042187570068158538691971701, 9.591262146566336829551694601789, 10.54411253733305747923782823442