L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (1.56 + 1.59i)5-s + (1.65 − 2.06i)7-s + (0.707 − 0.707i)8-s + (1.92 + 1.13i)10-s + (0.565 − 0.326i)11-s + (0.771 + 0.771i)13-s + (1.06 − 2.42i)14-s + (0.500 − 0.866i)16-s + (−0.554 + 2.06i)17-s + (−4.34 − 2.50i)19-s + (2.15 + 0.596i)20-s + (0.461 − 0.461i)22-s + (0.242 + 0.905i)23-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.433 − 0.249i)4-s + (0.701 + 0.712i)5-s + (0.626 − 0.779i)7-s + (0.249 − 0.249i)8-s + (0.609 + 0.358i)10-s + (0.170 − 0.0984i)11-s + (0.214 + 0.214i)13-s + (0.285 − 0.647i)14-s + (0.125 − 0.216i)16-s + (−0.134 + 0.501i)17-s + (−0.996 − 0.575i)19-s + (0.481 + 0.133i)20-s + (0.0984 − 0.0984i)22-s + (0.0505 + 0.188i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.62114 - 0.289511i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.62114 - 0.289511i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.56 - 1.59i)T \) |
| 7 | \( 1 + (-1.65 + 2.06i)T \) |
good | 11 | \( 1 + (-0.565 + 0.326i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.771 - 0.771i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.554 - 2.06i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (4.34 + 2.50i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.242 - 0.905i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 9.79T + 29T^{2} \) |
| 31 | \( 1 + (0.897 + 1.55i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.67 + 6.26i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 7.89iT - 41T^{2} \) |
| 43 | \( 1 + (0.0657 + 0.0657i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.18 - 0.854i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (7.13 + 1.91i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.39 - 5.87i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.33 - 7.51i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.21 + 1.66i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 7.68iT - 71T^{2} \) |
| 73 | \( 1 + (-2.58 + 9.62i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (10.3 + 5.96i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.838 + 0.838i)T - 83iT^{2} \) |
| 89 | \( 1 + (8.65 - 14.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.59 - 8.59i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72626650055570246592952982052, −10.02412790340491893901880031269, −8.874976943552622086829709115809, −7.75892081616201607112304787009, −6.72841062278592812263391546724, −6.15580199323765506979415601798, −4.90574132886672735421174980688, −4.01888854319458043994284704974, −2.78468106497424021631484167385, −1.56012728168678279119282904123,
1.63189488757420798688198352593, 2.78351331472165227469148392847, 4.36261736762620352014206612987, 5.10208966885313968208780200542, 5.95080224138586346589050397325, 6.78853586052621366665295566976, 8.241766649761066058069098179421, 8.634174036100195102355208094208, 9.768601442543050068854342706550, 10.68692430517899457176449161007