L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (−1.99 − 1.01i)5-s + (1.78 − 1.94i)7-s + (0.707 + 0.707i)8-s + (−0.469 + 2.18i)10-s + (−2.64 + 1.52i)11-s + (1 − i)13-s + (−2.34 − 1.22i)14-s + (0.500 − 0.866i)16-s + (−4.16 − 1.11i)17-s + (−5.47 − 3.15i)19-s + (2.23 − 0.111i)20-s + (2.15 + 2.15i)22-s + (1.62 − 0.435i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.889 − 0.456i)5-s + (0.676 − 0.736i)7-s + (0.249 + 0.249i)8-s + (−0.148 + 0.691i)10-s + (−0.797 + 0.460i)11-s + (0.277 − 0.277i)13-s + (−0.626 − 0.327i)14-s + (0.125 − 0.216i)16-s + (−1.01 − 0.270i)17-s + (−1.25 − 0.724i)19-s + (0.499 − 0.0250i)20-s + (0.460 + 0.460i)22-s + (0.339 − 0.0908i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.909 - 0.416i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.909 - 0.416i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0856642 + 0.392542i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0856642 + 0.392542i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.99 + 1.01i)T \) |
| 7 | \( 1 + (-1.78 + 1.94i)T \) |
good | 11 | \( 1 + (2.64 - 1.52i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 + (4.16 + 1.11i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (5.47 + 3.15i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.62 + 0.435i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 5.88T + 29T^{2} \) |
| 31 | \( 1 + (-1.5 - 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.83 - 1.83i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 2.82iT - 41T^{2} \) |
| 43 | \( 1 + (7.63 - 7.63i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.0819 - 0.305i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.422 - 1.57i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (5.99 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.15 - 5.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.89 + 14.5i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 1.86iT - 71T^{2} \) |
| 73 | \( 1 + (-3.66 - 0.982i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (3.14 + 1.81i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.67 - 8.67i)T + 83iT^{2} \) |
| 89 | \( 1 + (-6.32 + 10.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.84 + 5.84i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41144466902882300091878984897, −9.159674024885000763255438006609, −8.397609768217314991717131906199, −7.68302101573369338584077102195, −6.75935183904477555753957403537, −4.96894191830702078834327657514, −4.50798092213506967403294564665, −3.35752893487138527630001109385, −1.87788707864263767593109403774, −0.22532130991183929534283103240,
2.15267597897024642496982389343, 3.68647843519153714978528760617, 4.72434094843471744512365076903, 5.77368000619226405158178815308, 6.68998087406009370350560239954, 7.68617794390850099965932941026, 8.427045976535743613672986323384, 8.922952931988222910027754044288, 10.37615946657777611519262915652, 11.00035771250915887032989272869