L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−1.55 − 1.61i)5-s + (−1.38 − 2.25i)7-s + (−0.707 − 0.707i)8-s + (1.08 + 1.95i)10-s + (−0.582 + 1.00i)11-s + (−1.92 + 1.92i)13-s + (0.756 + 2.53i)14-s + (0.500 + 0.866i)16-s + (0.0209 − 0.00560i)17-s + (−0.989 − 1.71i)19-s + (−0.537 − 2.17i)20-s + (0.824 − 0.824i)22-s + (−1.85 + 6.93i)23-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (0.433 + 0.249i)4-s + (−0.693 − 0.720i)5-s + (−0.524 − 0.851i)7-s + (−0.249 − 0.249i)8-s + (0.341 + 0.618i)10-s + (−0.175 + 0.304i)11-s + (−0.533 + 0.533i)13-s + (0.202 + 0.677i)14-s + (0.125 + 0.216i)16-s + (0.00507 − 0.00136i)17-s + (−0.226 − 0.393i)19-s + (−0.120 − 0.485i)20-s + (0.175 − 0.175i)22-s + (−0.387 + 1.44i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.588 - 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0492886 + 0.0968803i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0492886 + 0.0968803i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.55 + 1.61i)T \) |
| 7 | \( 1 + (1.38 + 2.25i)T \) |
good | 11 | \( 1 + (0.582 - 1.00i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.92 - 1.92i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.0209 + 0.00560i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (0.989 + 1.71i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.85 - 6.93i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 5.60iT - 29T^{2} \) |
| 31 | \( 1 + (-6.86 - 3.96i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (10.2 + 2.74i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 2.48iT - 41T^{2} \) |
| 43 | \( 1 + (7.87 + 7.87i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.05 + 3.94i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (2.82 - 0.757i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (5.34 - 9.25i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.15 - 1.82i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.76 - 14.0i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 7.51T + 71T^{2} \) |
| 73 | \( 1 + (-0.969 - 3.61i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (1.39 - 0.805i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.74 + 9.74i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.80 + 3.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.265 + 0.265i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71753067694333510592097168214, −10.03048965889454513891511367384, −9.137277089427227676943784908989, −8.410898712718138643522341834823, −7.30031209310952116764047894993, −6.94008423568542680072720115353, −5.34195340615892936160603267633, −4.24639431768772147880287850241, −3.25410934018056334359886298003, −1.52230859448220617796066258713,
0.07313478492625684787321701612, 2.38635067397268110461533825881, 3.27936277031046373324698930893, 4.77698230992713317797413492199, 6.15898214984803281457174185910, 6.62711728884489414273849943085, 7.997116654647158417917064147000, 8.241295945468987728272880581172, 9.520997693676629827848814187113, 10.20979719635761237841301513524