L(s) = 1 | + 2-s + (0.241 + 1.71i)3-s + 4-s + (−0.381 + 2.20i)5-s + (0.241 + 1.71i)6-s + (2.63 + 0.178i)7-s + 8-s + (−2.88 + 0.829i)9-s + (−0.381 + 2.20i)10-s + (3.12 − 1.80i)11-s + (0.241 + 1.71i)12-s + (1.68 + 2.92i)13-s + (2.63 + 0.178i)14-s + (−3.87 − 0.121i)15-s + 16-s + (−6.40 − 3.69i)17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.139 + 0.990i)3-s + 0.5·4-s + (−0.170 + 0.985i)5-s + (0.0987 + 0.700i)6-s + (0.997 + 0.0674i)7-s + 0.353·8-s + (−0.960 + 0.276i)9-s + (−0.120 + 0.696i)10-s + (0.942 − 0.544i)11-s + (0.0698 + 0.495i)12-s + (0.467 + 0.810i)13-s + (0.705 + 0.0477i)14-s + (−0.999 − 0.0314i)15-s + 0.250·16-s + (−1.55 − 0.897i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.00660 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.00660 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76571 + 1.75409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76571 + 1.75409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.241 - 1.71i)T \) |
| 5 | \( 1 + (0.381 - 2.20i)T \) |
| 7 | \( 1 + (-2.63 - 0.178i)T \) |
good | 11 | \( 1 + (-3.12 + 1.80i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.68 - 2.92i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (6.40 + 3.69i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.15 - 2.39i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.99 + 6.91i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.66 - 4.42i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.44iT - 31T^{2} \) |
| 37 | \( 1 + (5.56 - 3.21i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.31 + 2.27i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.660 + 0.381i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 8.22iT - 47T^{2} \) |
| 53 | \( 1 + (-1.47 + 2.55i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 1.12T + 59T^{2} \) |
| 61 | \( 1 + 1.68iT - 61T^{2} \) |
| 67 | \( 1 + 4.74iT - 67T^{2} \) |
| 71 | \( 1 - 1.40iT - 71T^{2} \) |
| 73 | \( 1 + (-2.78 + 4.81i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 0.172T + 79T^{2} \) |
| 83 | \( 1 + (-11.5 - 6.65i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.08 + 12.2i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.18 + 7.25i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87812462195847766291968154204, −10.36160513606121298604626183455, −8.793789683718112226168626516310, −8.557932090927332942028307585348, −6.85103518019236842025881086439, −6.43798402800403323103867424721, −4.97202149906944535124098760002, −4.32087722557769144000998894707, −3.34417256388010624577007520123, −2.18140261726275558128729483332,
1.21585693349774985727190965297, 2.22799058519488562945794866599, 3.93700601145118820009081609311, 4.75780085908020170382175362728, 5.85096232211922462220796215532, 6.71475037439555524399212673412, 7.75699520464295786977075948242, 8.468486526972281782168626979845, 9.187240720361841489990449642200, 10.79179428720340362290559486961