L(s) = 1 | − 2-s + (−1.13 + 1.30i)3-s + 4-s + (−2.11 + 0.716i)5-s + (1.13 − 1.30i)6-s + (2.41 + 1.07i)7-s − 8-s + (−0.410 − 2.97i)9-s + (2.11 − 0.716i)10-s + (5.13 + 2.96i)11-s + (−1.13 + 1.30i)12-s + (2.57 − 4.46i)13-s + (−2.41 − 1.07i)14-s + (1.47 − 3.58i)15-s + 16-s + (−1.62 + 0.935i)17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.656 + 0.753i)3-s + 0.5·4-s + (−0.947 + 0.320i)5-s + (0.464 − 0.533i)6-s + (0.912 + 0.408i)7-s − 0.353·8-s + (−0.136 − 0.990i)9-s + (0.669 − 0.226i)10-s + (1.54 + 0.894i)11-s + (−0.328 + 0.376i)12-s + (0.715 − 1.23i)13-s + (−0.645 − 0.288i)14-s + (0.380 − 0.924i)15-s + 0.250·16-s + (−0.392 + 0.226i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0906 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0906 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.544713 + 0.596543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.544713 + 0.596543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (1.13 - 1.30i)T \) |
| 5 | \( 1 + (2.11 - 0.716i)T \) |
| 7 | \( 1 + (-2.41 - 1.07i)T \) |
good | 11 | \( 1 + (-5.13 - 2.96i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.57 + 4.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.62 - 0.935i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.51 + 0.872i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.20 - 5.55i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.16 - 1.25i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.36iT - 31T^{2} \) |
| 37 | \( 1 + (-1.17 - 0.680i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.79 - 6.57i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.07 - 2.35i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.74iT - 47T^{2} \) |
| 53 | \( 1 + (0.628 + 1.08i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 1.30T + 59T^{2} \) |
| 61 | \( 1 - 11.4iT - 61T^{2} \) |
| 67 | \( 1 - 15.0iT - 67T^{2} \) |
| 71 | \( 1 - 2.88iT - 71T^{2} \) |
| 73 | \( 1 + (1.79 + 3.11i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 8.42T + 79T^{2} \) |
| 83 | \( 1 + (2.43 - 1.40i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-8.92 + 15.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.23 + 2.13i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84925025393665469591222390228, −10.08287557373467081822152431131, −9.004751096393542196738089083629, −8.435739294239330953189924106179, −7.30793400032923885469959445916, −6.48826668679110180381027493361, −5.31982412255096873664197966328, −4.26530722033563646345853110923, −3.29313593028396560553772123327, −1.30406161590029145709373090117,
0.73160805755363768870820319631, 1.79652837976618901087852440831, 3.81917984877954669422653488796, 4.74992722568712894167619862631, 6.26133990439050627513118457754, 6.81894335940714185066717104188, 7.79694972482861018021215895584, 8.567501559730503113924925807335, 9.161381009174282793480761120775, 10.87036732038880910094184549564