Properties

Label 2-63-1.1-c5-0-6
Degree $2$
Conductor $63$
Sign $-1$
Analytic cond. $10.1041$
Root an. cond. $3.17870$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.27·2-s + 36.4·4-s − 28.7·5-s + 49·7-s − 37.0·8-s + 237.·10-s + 270.·11-s + 300.·13-s − 405.·14-s − 860.·16-s − 613.·17-s − 1.70e3·19-s − 1.04e3·20-s − 2.23e3·22-s − 3.18e3·23-s − 2.29e3·25-s − 2.48e3·26-s + 1.78e3·28-s − 4.29e3·29-s + 2.02e3·31-s + 8.30e3·32-s + 5.07e3·34-s − 1.40e3·35-s + 5.15e3·37-s + 1.40e4·38-s + 1.06e3·40-s + 7.14e3·41-s + ⋯
L(s)  = 1  − 1.46·2-s + 1.13·4-s − 0.514·5-s + 0.377·7-s − 0.204·8-s + 0.752·10-s + 0.673·11-s + 0.493·13-s − 0.552·14-s − 0.840·16-s − 0.514·17-s − 1.08·19-s − 0.586·20-s − 0.984·22-s − 1.25·23-s − 0.735·25-s − 0.721·26-s + 0.430·28-s − 0.949·29-s + 0.379·31-s + 1.43·32-s + 0.752·34-s − 0.194·35-s + 0.618·37-s + 1.58·38-s + 0.105·40-s + 0.663·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.1041\)
Root analytic conductor: \(3.17870\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 63,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 49T \)
good2 \( 1 + 8.27T + 32T^{2} \)
5 \( 1 + 28.7T + 3.12e3T^{2} \)
11 \( 1 - 270.T + 1.61e5T^{2} \)
13 \( 1 - 300.T + 3.71e5T^{2} \)
17 \( 1 + 613.T + 1.41e6T^{2} \)
19 \( 1 + 1.70e3T + 2.47e6T^{2} \)
23 \( 1 + 3.18e3T + 6.43e6T^{2} \)
29 \( 1 + 4.29e3T + 2.05e7T^{2} \)
31 \( 1 - 2.02e3T + 2.86e7T^{2} \)
37 \( 1 - 5.15e3T + 6.93e7T^{2} \)
41 \( 1 - 7.14e3T + 1.15e8T^{2} \)
43 \( 1 + 1.95e4T + 1.47e8T^{2} \)
47 \( 1 + 1.99e4T + 2.29e8T^{2} \)
53 \( 1 + 3.94e3T + 4.18e8T^{2} \)
59 \( 1 - 2.97e4T + 7.14e8T^{2} \)
61 \( 1 + 5.05e4T + 8.44e8T^{2} \)
67 \( 1 - 5.05e3T + 1.35e9T^{2} \)
71 \( 1 + 3.28e4T + 1.80e9T^{2} \)
73 \( 1 + 1.11e4T + 2.07e9T^{2} \)
79 \( 1 - 8.18e4T + 3.07e9T^{2} \)
83 \( 1 + 1.18e5T + 3.93e9T^{2} \)
89 \( 1 - 4.16e4T + 5.58e9T^{2} \)
97 \( 1 - 4.36e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.40068732379135880809024521843, −11.79235286957854930258046095508, −10.96738464651369409102198206617, −9.770019056205913469553285644602, −8.622324041671088209687833388445, −7.80627524892866774731121675700, −6.41975590104036289706913594785, −4.18210231475701305866080517294, −1.76249649689538642059159317241, 0, 1.76249649689538642059159317241, 4.18210231475701305866080517294, 6.41975590104036289706913594785, 7.80627524892866774731121675700, 8.622324041671088209687833388445, 9.770019056205913469553285644602, 10.96738464651369409102198206617, 11.79235286957854930258046095508, 13.40068732379135880809024521843

Graph of the $Z$-function along the critical line