L(s) = 1 | − 5.23i·2-s + (−2.33 + 4.64i)3-s − 19.4·4-s + (−6.10 + 10.5i)5-s + (24.3 + 12.2i)6-s + (18.4 + 1.88i)7-s + 59.9i·8-s + (−16.0 − 21.6i)9-s + (55.3 + 31.9i)10-s + (−55.0 + 31.8i)11-s + (45.3 − 90.2i)12-s + (−13.7 + 7.96i)13-s + (9.89 − 96.5i)14-s + (−34.8 − 53.0i)15-s + 158.·16-s + (−17.9 + 31.0i)17-s + ⋯ |
L(s) = 1 | − 1.85i·2-s + (−0.449 + 0.893i)3-s − 2.43·4-s + (−0.546 + 0.945i)5-s + (1.65 + 0.832i)6-s + (0.994 + 0.101i)7-s + 2.64i·8-s + (−0.596 − 0.802i)9-s + (1.75 + 1.01i)10-s + (−1.50 + 0.871i)11-s + (1.09 − 2.17i)12-s + (−0.294 + 0.169i)13-s + (0.188 − 1.84i)14-s + (−0.599 − 0.912i)15-s + 2.47·16-s + (−0.255 + 0.443i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.529 - 0.848i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.529 - 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.428672 + 0.237652i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.428672 + 0.237652i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.33 - 4.64i)T \) |
| 7 | \( 1 + (-18.4 - 1.88i)T \) |
good | 2 | \( 1 + 5.23iT - 8T^{2} \) |
| 5 | \( 1 + (6.10 - 10.5i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (55.0 - 31.8i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (13.7 - 7.96i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + (17.9 - 31.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (13.8 - 7.97i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-39.5 - 22.8i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (206. + 119. i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 135. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-18.0 - 31.3i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-84.5 - 146. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (37.8 - 65.6i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 6.93T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-33.2 - 19.2i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + 124.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 514. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 335.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 716. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-725. - 418. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + 409.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (135. - 234. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + (-717. - 1.24e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (433. + 250. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.68600229307345441558775864021, −13.15477346163125971630941254909, −11.91542801410564153054170350570, −11.07520505335310105479206965044, −10.54719674460175427797783562408, −9.483664483543364801747945401343, −7.890442361190419926698242061828, −5.14620710956755816175659906467, −4.02352297106829087365808915981, −2.47810825092906890352358883854,
0.35456991571847931837916822913, 4.88282387571897591755444259788, 5.52686012223809700216879040740, 7.20724090932399392633932693423, 8.045224787111196355683108525285, 8.712150075777611935616458747907, 10.97301547342553953777945018529, 12.56330644262582138205235142119, 13.38492830826442051668247563067, 14.36778858939291916799241284371