Properties

Label 2-626-1.1-c3-0-1
Degree $2$
Conductor $626$
Sign $1$
Analytic cond. $36.9351$
Root an. cond. $6.07743$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 8.31·3-s + 4·4-s − 11.7·5-s − 16.6·6-s − 28.8·7-s + 8·8-s + 42.1·9-s − 23.5·10-s − 9.34·11-s − 33.2·12-s − 87.1·13-s − 57.6·14-s + 97.7·15-s + 16·16-s − 3.68·17-s + 84.3·18-s − 159.·19-s − 47.0·20-s + 239.·21-s − 18.6·22-s − 158.·23-s − 66.5·24-s + 13.1·25-s − 174.·26-s − 126.·27-s − 115.·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.60·3-s + 0.5·4-s − 1.05·5-s − 1.13·6-s − 1.55·7-s + 0.353·8-s + 1.56·9-s − 0.743·10-s − 0.256·11-s − 0.800·12-s − 1.85·13-s − 1.10·14-s + 1.68·15-s + 0.250·16-s − 0.0525·17-s + 1.10·18-s − 1.92·19-s − 0.525·20-s + 2.49·21-s − 0.181·22-s − 1.44·23-s − 0.565·24-s + 0.105·25-s − 1.31·26-s − 0.899·27-s − 0.778·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 626 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 626 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(626\)    =    \(2 \cdot 313\)
Sign: $1$
Analytic conductor: \(36.9351\)
Root analytic conductor: \(6.07743\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 626,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.06232169246\)
\(L(\frac12)\) \(\approx\) \(0.06232169246\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
313 \( 1 - 313T \)
good3 \( 1 + 8.31T + 27T^{2} \)
5 \( 1 + 11.7T + 125T^{2} \)
7 \( 1 + 28.8T + 343T^{2} \)
11 \( 1 + 9.34T + 1.33e3T^{2} \)
13 \( 1 + 87.1T + 2.19e3T^{2} \)
17 \( 1 + 3.68T + 4.91e3T^{2} \)
19 \( 1 + 159.T + 6.85e3T^{2} \)
23 \( 1 + 158.T + 1.21e4T^{2} \)
29 \( 1 - 181.T + 2.43e4T^{2} \)
31 \( 1 + 63.8T + 2.97e4T^{2} \)
37 \( 1 + 53.2T + 5.06e4T^{2} \)
41 \( 1 - 190.T + 6.89e4T^{2} \)
43 \( 1 + 129.T + 7.95e4T^{2} \)
47 \( 1 + 396.T + 1.03e5T^{2} \)
53 \( 1 + 13.7T + 1.48e5T^{2} \)
59 \( 1 - 843.T + 2.05e5T^{2} \)
61 \( 1 + 27.7T + 2.26e5T^{2} \)
67 \( 1 - 613.T + 3.00e5T^{2} \)
71 \( 1 - 680.T + 3.57e5T^{2} \)
73 \( 1 + 567.T + 3.89e5T^{2} \)
79 \( 1 + 882.T + 4.93e5T^{2} \)
83 \( 1 + 352.T + 5.71e5T^{2} \)
89 \( 1 + 1.59e3T + 7.04e5T^{2} \)
97 \( 1 + 1.45e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26633297061397150317073076712, −9.889154426334932144609768207722, −8.194101646629008829719656206438, −7.02820091720839225534856098175, −6.56293777194321022478190071021, −5.66797573239180943789246240110, −4.62456074847031143257366519888, −3.91149951182477957259191599823, −2.49251329771291302302021460649, −0.13196424200891174924754400075, 0.13196424200891174924754400075, 2.49251329771291302302021460649, 3.91149951182477957259191599823, 4.62456074847031143257366519888, 5.66797573239180943789246240110, 6.56293777194321022478190071021, 7.02820091720839225534856098175, 8.194101646629008829719656206438, 9.889154426334932144609768207722, 10.26633297061397150317073076712

Graph of the $Z$-function along the critical line