| L(s) = 1 | + (2.15 + 1.56i)2-s + (−0.234 − 0.721i)3-s + (1.57 + 4.85i)4-s + (0.625 − 1.92i)6-s + 2.04·7-s + (−2.55 + 7.86i)8-s + (1.96 − 1.42i)9-s + (−1.09 − 0.792i)11-s + (3.13 − 2.27i)12-s + (1.06 − 0.775i)13-s + (4.40 + 3.19i)14-s + (−9.56 + 6.95i)16-s + (−1.26 + 3.88i)17-s + 6.45·18-s + (−1.51 + 4.64i)19-s + ⋯ |
| L(s) = 1 | + (1.52 + 1.10i)2-s + (−0.135 − 0.416i)3-s + (0.788 + 2.42i)4-s + (0.255 − 0.785i)6-s + 0.771·7-s + (−0.903 + 2.77i)8-s + (0.653 − 0.474i)9-s + (−0.328 − 0.239i)11-s + (0.904 − 0.657i)12-s + (0.296 − 0.215i)13-s + (1.17 + 0.854i)14-s + (−2.39 + 1.73i)16-s + (−0.306 + 0.942i)17-s + 1.52·18-s + (−0.346 + 1.06i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0209 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0209 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.48558 + 2.43406i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.48558 + 2.43406i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| good | 2 | \( 1 + (-2.15 - 1.56i)T + (0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.234 + 0.721i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 - 2.04T + 7T^{2} \) |
| 11 | \( 1 + (1.09 + 0.792i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-1.06 + 0.775i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.26 - 3.88i)T + (-13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (1.51 - 4.64i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (2.21 + 1.60i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (1.42 + 4.39i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.21 + 6.80i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (6.99 - 5.08i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-8.17 + 5.93i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 2.43T + 43T^{2} \) |
| 47 | \( 1 + (2.33 + 7.20i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.191 - 0.590i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-9.17 + 6.66i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (0.523 + 0.380i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (3.38 - 10.4i)T + (-54.2 - 39.3i)T^{2} \) |
| 71 | \( 1 + (0.912 + 2.80i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-10.9 - 7.95i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-0.583 - 1.79i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (0.733 - 2.25i)T + (-67.1 - 48.7i)T^{2} \) |
| 89 | \( 1 + (5.93 + 4.31i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (1.79 + 5.51i)T + (-78.4 + 57.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.24376260980153875773037567834, −10.06802786007193265956909065063, −8.375717060431021513261974818106, −8.009413606734150913463182285140, −7.00565949109662279101179495412, −6.17442010396192962000876472405, −5.53152196277037094229571415684, −4.32608366278836485565716455678, −3.71089900643785780105089010996, −2.06956332681348278142918572623,
1.52574057981633482419162874480, 2.62845431821111200384828755758, 3.87085978297438778146723780881, 4.88236608580364639540783937581, 5.08065595653221829616475945579, 6.47712227055950762662375000714, 7.48442787239382438666409587357, 9.032748174587496906220115536209, 9.962266856869548710988327874596, 10.86593773328441789768360296556