| L(s) = 1 | + (0.823 − 2.53i)2-s + (−0.614 − 0.446i)3-s + (−4.12 − 2.99i)4-s + (−1.63 + 1.18i)6-s − 2.04·7-s + (−6.68 + 4.85i)8-s + (−0.748 − 2.30i)9-s + (0.416 − 1.28i)11-s + (1.19 + 3.68i)12-s + (0.407 + 1.25i)13-s + (−1.68 + 5.17i)14-s + (3.65 + 11.2i)16-s + (−3.30 + 2.40i)17-s − 6.45·18-s + (3.95 − 2.87i)19-s + ⋯ |
| L(s) = 1 | + (0.582 − 1.79i)2-s + (−0.354 − 0.257i)3-s + (−2.06 − 1.49i)4-s + (−0.668 + 0.485i)6-s − 0.771·7-s + (−2.36 + 1.71i)8-s + (−0.249 − 0.768i)9-s + (0.125 − 0.386i)11-s + (0.345 + 1.06i)12-s + (0.113 + 0.348i)13-s + (−0.449 + 1.38i)14-s + (0.913 + 2.81i)16-s + (−0.801 + 0.582i)17-s − 1.52·18-s + (0.906 − 0.658i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.268 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 625 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.268 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.525560 + 0.398921i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.525560 + 0.398921i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| good | 2 | \( 1 + (-0.823 + 2.53i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (0.614 + 0.446i)T + (0.927 + 2.85i)T^{2} \) |
| 7 | \( 1 + 2.04T + 7T^{2} \) |
| 11 | \( 1 + (-0.416 + 1.28i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-0.407 - 1.25i)T + (-10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (3.30 - 2.40i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-3.95 + 2.87i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (0.845 - 2.60i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-3.73 - 2.71i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (5.79 - 4.20i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.67 + 8.22i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (3.12 + 9.60i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.43T + 43T^{2} \) |
| 47 | \( 1 + (6.12 + 4.45i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (-0.502 - 0.365i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (3.50 + 10.7i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.200 + 0.615i)T + (-49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 + (8.84 - 6.42i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (-2.38 - 1.73i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.18 + 12.8i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.52 + 1.11i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (1.92 - 1.39i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-2.26 + 6.97i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (4.69 + 3.40i)T + (29.9 + 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19879209308987355992775312297, −9.198071685578514194419574123287, −8.861592191567568239285872732458, −6.96798563199815057176306326365, −5.97702706679609746052449695119, −5.07029203407572269521709103351, −3.75810345461305396936808772418, −3.19469815821395295595237707694, −1.76325209126700821229393907301, −0.31037711411175745129626775785,
3.04770224389897542996774609765, 4.32814802367962722356375136419, 5.06346738164219583857516810947, 5.98221164657067265469437927074, 6.65924501716394478150536842887, 7.63146394695622522502172995774, 8.308820719934822331908951841860, 9.380345602796340278762126443863, 10.10736048596626848900897000188, 11.44864456351669691605585404813