Properties

Label 4-624e2-1.1-c0e2-0-1
Degree $4$
Conductor $389376$
Sign $1$
Analytic cond. $0.0969802$
Root an. cond. $0.558047$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 13-s + 2·19-s − 21-s + 2·25-s − 27-s + 2·31-s − 2·37-s − 39-s − 43-s + 49-s + 2·57-s + 61-s − 67-s − 2·73-s + 2·75-s + 2·79-s − 81-s + 91-s + 2·93-s + 97-s + 2·103-s − 2·109-s − 2·111-s − 121-s + 127-s + ⋯
L(s)  = 1  + 3-s − 7-s − 13-s + 2·19-s − 21-s + 2·25-s − 27-s + 2·31-s − 2·37-s − 39-s − 43-s + 49-s + 2·57-s + 61-s − 67-s − 2·73-s + 2·75-s + 2·79-s − 81-s + 91-s + 2·93-s + 97-s + 2·103-s − 2·109-s − 2·111-s − 121-s + 127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 389376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(389376\)    =    \(2^{8} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(0.0969802\)
Root analytic conductor: \(0.558047\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 389376,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.000704343\)
\(L(\frac12)\) \(\approx\) \(1.000704343\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - T + T^{2} \)
13$C_2$ \( 1 + T + T^{2} \)
good5$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
7$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
19$C_2$ \( ( 1 - T + T^{2} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
67$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 + T + T^{2} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.97129559742215482040433422081, −10.32018202553473976428829763955, −9.981085007977267980040519429716, −9.931116091747346110423443473801, −9.161734658914559992170500016083, −8.819517375467821617261056172790, −8.706343166259501100413986556692, −7.905440660939254498211302819696, −7.52829590889521030325909695006, −7.18696686612219393493168256722, −6.54061499592056824897355517689, −6.35739422124495901714742421690, −5.28998269265951728654071309050, −5.24019114261790407986474765330, −4.58052234750667136602277376957, −3.71554517260195559653698089902, −3.23304083245014877016300954431, −2.88839019527895316305330121017, −2.39082741539602521707451450714, −1.23506609194945257266445349374, 1.23506609194945257266445349374, 2.39082741539602521707451450714, 2.88839019527895316305330121017, 3.23304083245014877016300954431, 3.71554517260195559653698089902, 4.58052234750667136602277376957, 5.24019114261790407986474765330, 5.28998269265951728654071309050, 6.35739422124495901714742421690, 6.54061499592056824897355517689, 7.18696686612219393493168256722, 7.52829590889521030325909695006, 7.905440660939254498211302819696, 8.706343166259501100413986556692, 8.819517375467821617261056172790, 9.161734658914559992170500016083, 9.931116091747346110423443473801, 9.981085007977267980040519429716, 10.32018202553473976428829763955, 10.97129559742215482040433422081

Graph of the $Z$-function along the critical line