Properties

Label 2-6223-1.1-c1-0-116
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.08·2-s − 2.29·3-s + 2.34·4-s − 0.933·5-s + 4.77·6-s − 0.725·8-s + 2.25·9-s + 1.94·10-s + 2.78·11-s − 5.38·12-s + 0.193·13-s + 2.14·15-s − 3.18·16-s + 2.51·17-s − 4.70·18-s + 7.64·19-s − 2.19·20-s − 5.81·22-s − 5.15·23-s + 1.66·24-s − 4.12·25-s − 0.404·26-s + 1.70·27-s + 5.69·29-s − 4.46·30-s − 0.00490·31-s + 8.08·32-s + ⋯
L(s)  = 1  − 1.47·2-s − 1.32·3-s + 1.17·4-s − 0.417·5-s + 1.95·6-s − 0.256·8-s + 0.751·9-s + 0.615·10-s + 0.840·11-s − 1.55·12-s + 0.0537·13-s + 0.552·15-s − 0.795·16-s + 0.610·17-s − 1.10·18-s + 1.75·19-s − 0.490·20-s − 1.23·22-s − 1.07·23-s + 0.339·24-s − 0.825·25-s − 0.0792·26-s + 0.328·27-s + 1.05·29-s − 0.814·30-s − 0.000881·31-s + 1.42·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5788725118\)
\(L(\frac12)\) \(\approx\) \(0.5788725118\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 2.08T + 2T^{2} \)
3 \( 1 + 2.29T + 3T^{2} \)
5 \( 1 + 0.933T + 5T^{2} \)
11 \( 1 - 2.78T + 11T^{2} \)
13 \( 1 - 0.193T + 13T^{2} \)
17 \( 1 - 2.51T + 17T^{2} \)
19 \( 1 - 7.64T + 19T^{2} \)
23 \( 1 + 5.15T + 23T^{2} \)
29 \( 1 - 5.69T + 29T^{2} \)
31 \( 1 + 0.00490T + 31T^{2} \)
37 \( 1 - 6.30T + 37T^{2} \)
41 \( 1 + 0.548T + 41T^{2} \)
43 \( 1 - 1.75T + 43T^{2} \)
47 \( 1 - 11.3T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 5.48T + 59T^{2} \)
61 \( 1 - 9.56T + 61T^{2} \)
67 \( 1 - 14.4T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 - 6.92T + 73T^{2} \)
79 \( 1 + 9.73T + 79T^{2} \)
83 \( 1 - 0.0567T + 83T^{2} \)
89 \( 1 + 2.59T + 89T^{2} \)
97 \( 1 - 8.05T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.045895050052091022634203977974, −7.38491660704792884437613553276, −6.86631106603135920967454106247, −5.99642547133848751733355397317, −5.48171063847597253754724990949, −4.47223483002768736154924218852, −3.70896884079413655418919665108, −2.41058691876046576192240232619, −1.13876139066187313649647756390, −0.67109224792568096707800118798, 0.67109224792568096707800118798, 1.13876139066187313649647756390, 2.41058691876046576192240232619, 3.70896884079413655418919665108, 4.47223483002768736154924218852, 5.48171063847597253754724990949, 5.99642547133848751733355397317, 6.86631106603135920967454106247, 7.38491660704792884437613553276, 8.045895050052091022634203977974

Graph of the $Z$-function along the critical line