Properties

Label 2-6223-1.1-c1-0-205
Degree $2$
Conductor $6223$
Sign $1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.583·2-s + 3.17·3-s − 1.65·4-s + 1.76·5-s − 1.85·6-s + 2.13·8-s + 7.09·9-s − 1.03·10-s − 2.47·11-s − 5.27·12-s − 4.76·13-s + 5.61·15-s + 2.07·16-s + 2.27·17-s − 4.13·18-s + 5.68·19-s − 2.93·20-s + 1.44·22-s + 1.88·23-s + 6.78·24-s − 1.88·25-s + 2.78·26-s + 12.9·27-s − 10.0·29-s − 3.27·30-s − 4.26·31-s − 5.47·32-s + ⋯
L(s)  = 1  − 0.412·2-s + 1.83·3-s − 0.829·4-s + 0.789·5-s − 0.756·6-s + 0.754·8-s + 2.36·9-s − 0.325·10-s − 0.746·11-s − 1.52·12-s − 1.32·13-s + 1.44·15-s + 0.518·16-s + 0.552·17-s − 0.975·18-s + 1.30·19-s − 0.655·20-s + 0.308·22-s + 0.392·23-s + 1.38·24-s − 0.376·25-s + 0.545·26-s + 2.50·27-s − 1.86·29-s − 0.597·30-s − 0.765·31-s − 0.968·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.105343426\)
\(L(\frac12)\) \(\approx\) \(3.105343426\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 + 0.583T + 2T^{2} \)
3 \( 1 - 3.17T + 3T^{2} \)
5 \( 1 - 1.76T + 5T^{2} \)
11 \( 1 + 2.47T + 11T^{2} \)
13 \( 1 + 4.76T + 13T^{2} \)
17 \( 1 - 2.27T + 17T^{2} \)
19 \( 1 - 5.68T + 19T^{2} \)
23 \( 1 - 1.88T + 23T^{2} \)
29 \( 1 + 10.0T + 29T^{2} \)
31 \( 1 + 4.26T + 31T^{2} \)
37 \( 1 - 3.87T + 37T^{2} \)
41 \( 1 - 8.48T + 41T^{2} \)
43 \( 1 - 12.2T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 + 0.115T + 53T^{2} \)
59 \( 1 - 12.2T + 59T^{2} \)
61 \( 1 + 8.97T + 61T^{2} \)
67 \( 1 - 12.9T + 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 + 4.77T + 73T^{2} \)
79 \( 1 - 10.2T + 79T^{2} \)
83 \( 1 + 11.5T + 83T^{2} \)
89 \( 1 - 15.0T + 89T^{2} \)
97 \( 1 - 7.50T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.934732790922474012380596289590, −7.57231070183778962229841846784, −7.26885823208167831022480904727, −5.66851298871165690783217417718, −5.20789103389435332708459526001, −4.20303645516664963758561976933, −3.55436740909482885233691075652, −2.58131592459792640396850136066, −2.08318204149755615080839398895, −0.923061332191924758043801083397, 0.923061332191924758043801083397, 2.08318204149755615080839398895, 2.58131592459792640396850136066, 3.55436740909482885233691075652, 4.20303645516664963758561976933, 5.20789103389435332708459526001, 5.66851298871165690783217417718, 7.26885823208167831022480904727, 7.57231070183778962229841846784, 7.934732790922474012380596289590

Graph of the $Z$-function along the critical line