Properties

Label 2-6223-1.1-c1-0-209
Degree $2$
Conductor $6223$
Sign $-1$
Analytic cond. $49.6909$
Root an. cond. $7.04917$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.39·2-s − 2.89·3-s − 0.0576·4-s − 2.32·5-s − 4.03·6-s − 2.86·8-s + 5.37·9-s − 3.24·10-s + 3.46·11-s + 0.166·12-s − 1.96·13-s + 6.73·15-s − 3.88·16-s + 0.123·17-s + 7.49·18-s − 4.79·19-s + 0.134·20-s + 4.82·22-s − 2.03·23-s + 8.29·24-s + 0.414·25-s − 2.74·26-s − 6.87·27-s + 5.20·29-s + 9.38·30-s − 0.637·31-s + 0.325·32-s + ⋯
L(s)  = 1  + 0.985·2-s − 1.67·3-s − 0.0288·4-s − 1.04·5-s − 1.64·6-s − 1.01·8-s + 1.79·9-s − 1.02·10-s + 1.04·11-s + 0.0481·12-s − 0.545·13-s + 1.73·15-s − 0.970·16-s + 0.0298·17-s + 1.76·18-s − 1.10·19-s + 0.0299·20-s + 1.02·22-s − 0.425·23-s + 1.69·24-s + 0.0828·25-s − 0.537·26-s − 1.32·27-s + 0.965·29-s + 1.71·30-s − 0.114·31-s + 0.0576·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6223\)    =    \(7^{2} \cdot 127\)
Sign: $-1$
Analytic conductor: \(49.6909\)
Root analytic conductor: \(7.04917\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6223,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
127 \( 1 - T \)
good2 \( 1 - 1.39T + 2T^{2} \)
3 \( 1 + 2.89T + 3T^{2} \)
5 \( 1 + 2.32T + 5T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 + 1.96T + 13T^{2} \)
17 \( 1 - 0.123T + 17T^{2} \)
19 \( 1 + 4.79T + 19T^{2} \)
23 \( 1 + 2.03T + 23T^{2} \)
29 \( 1 - 5.20T + 29T^{2} \)
31 \( 1 + 0.637T + 31T^{2} \)
37 \( 1 + 4.00T + 37T^{2} \)
41 \( 1 - 7.67T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 - 10.6T + 47T^{2} \)
53 \( 1 - 0.121T + 53T^{2} \)
59 \( 1 - 4.93T + 59T^{2} \)
61 \( 1 - 9.06T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 - 14.8T + 71T^{2} \)
73 \( 1 + 6.89T + 73T^{2} \)
79 \( 1 + 12.3T + 79T^{2} \)
83 \( 1 + 6.63T + 83T^{2} \)
89 \( 1 - 4.91T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.30687222518560708280020036858, −6.79221036180544278402637147414, −5.99190079490766379225099093988, −5.64184648714383633132878793816, −4.61569031695154726823166394108, −4.26705388622121927173847987521, −3.77536164008587284126493728050, −2.48008842646177918807343345874, −0.930809305792159985559736949565, 0, 0.930809305792159985559736949565, 2.48008842646177918807343345874, 3.77536164008587284126493728050, 4.26705388622121927173847987521, 4.61569031695154726823166394108, 5.64184648714383633132878793816, 5.99190079490766379225099093988, 6.79221036180544278402637147414, 7.30687222518560708280020036858

Graph of the $Z$-function along the critical line