Properties

Label 2-62-31.15-c6-0-13
Degree $2$
Conductor $62$
Sign $-0.584 + 0.811i$
Analytic cond. $14.2633$
Root an. cond. $3.77668$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.57 − 3.32i)2-s + (15.4 − 21.2i)3-s + (9.88 − 30.4i)4-s + 6.26·5-s − 148. i·6-s + (109. − 336. i)7-s + (−55.9 − 172. i)8-s + (12.0 + 36.9i)9-s + (28.6 − 20.8i)10-s + (−988. − 321. i)11-s + (−494. − 680. i)12-s + (1.59e3 − 2.20e3i)13-s + (−619. − 1.90e3i)14-s + (96.7 − 133. i)15-s + (−828. − 601. i)16-s + (576. − 187. i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s + (0.571 − 0.787i)3-s + (0.154 − 0.475i)4-s + 0.0501·5-s − 0.687i·6-s + (0.319 − 0.982i)7-s + (−0.109 − 0.336i)8-s + (0.0164 + 0.0507i)9-s + (0.0286 − 0.0208i)10-s + (−0.742 − 0.241i)11-s + (−0.285 − 0.393i)12-s + (0.727 − 1.00i)13-s + (−0.225 − 0.694i)14-s + (0.0286 − 0.0394i)15-s + (−0.202 − 0.146i)16-s + (0.117 − 0.0381i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62\)    =    \(2 \cdot 31\)
Sign: $-0.584 + 0.811i$
Analytic conductor: \(14.2633\)
Root analytic conductor: \(3.77668\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{62} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 62,\ (\ :3),\ -0.584 + 0.811i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.32240 - 2.58363i\)
\(L(\frac12)\) \(\approx\) \(1.32240 - 2.58363i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4.57 + 3.32i)T \)
31 \( 1 + (-9.74e3 + 2.81e4i)T \)
good3 \( 1 + (-15.4 + 21.2i)T + (-225. - 693. i)T^{2} \)
5 \( 1 - 6.26T + 1.56e4T^{2} \)
7 \( 1 + (-109. + 336. i)T + (-9.51e4 - 6.91e4i)T^{2} \)
11 \( 1 + (988. + 321. i)T + (1.43e6 + 1.04e6i)T^{2} \)
13 \( 1 + (-1.59e3 + 2.20e3i)T + (-1.49e6 - 4.59e6i)T^{2} \)
17 \( 1 + (-576. + 187. i)T + (1.95e7 - 1.41e7i)T^{2} \)
19 \( 1 + (9.17e3 - 6.66e3i)T + (1.45e7 - 4.47e7i)T^{2} \)
23 \( 1 + (-1.29e4 + 4.21e3i)T + (1.19e8 - 8.70e7i)T^{2} \)
29 \( 1 + (3.01e3 + 4.15e3i)T + (-1.83e8 + 5.65e8i)T^{2} \)
37 \( 1 + 2.07e4iT - 2.56e9T^{2} \)
41 \( 1 + (-2.16e4 + 1.57e4i)T + (1.46e9 - 4.51e9i)T^{2} \)
43 \( 1 + (-7.81e4 - 1.07e5i)T + (-1.95e9 + 6.01e9i)T^{2} \)
47 \( 1 + (-6.99e4 - 5.07e4i)T + (3.33e9 + 1.02e10i)T^{2} \)
53 \( 1 + (-1.65e5 + 5.37e4i)T + (1.79e10 - 1.30e10i)T^{2} \)
59 \( 1 + (-2.13e5 - 1.55e5i)T + (1.30e10 + 4.01e10i)T^{2} \)
61 \( 1 - 2.40e5iT - 5.15e10T^{2} \)
67 \( 1 - 1.35e5T + 9.04e10T^{2} \)
71 \( 1 + (-2.45e4 - 7.55e4i)T + (-1.03e11 + 7.52e10i)T^{2} \)
73 \( 1 + (-8.78e4 - 2.85e4i)T + (1.22e11 + 8.89e10i)T^{2} \)
79 \( 1 + (-2.06e5 + 6.72e4i)T + (1.96e11 - 1.42e11i)T^{2} \)
83 \( 1 + (-2.35e4 - 3.24e4i)T + (-1.01e11 + 3.10e11i)T^{2} \)
89 \( 1 + (1.25e6 + 4.07e5i)T + (4.02e11 + 2.92e11i)T^{2} \)
97 \( 1 + (2.13e4 - 6.57e4i)T + (-6.73e11 - 4.89e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26642523236537517202019221970, −12.73672410606042798691496751844, −11.03552855827538062866633817528, −10.28551890376827974174412679062, −8.335966887330448707972651025800, −7.43354764886522671440434687063, −5.83607886145991125475300289969, −4.10580545306369925540593499463, −2.50620056859599533661486080593, −0.973100217448897568447663358743, 2.42686131004298534303053109252, 3.98352730515254990189704603736, 5.23918563349253533662254414510, 6.73519304776810970491265730920, 8.473851911289850657898132712573, 9.212736035659905212249480661874, 10.78401401270839940960944790871, 12.04516599614264391927486376542, 13.24441818803487848833252472246, 14.37162041173250348104833287527

Graph of the $Z$-function along the critical line