L(s) = 1 | + (−0.809 + 0.587i)2-s + (−2.48 − 1.80i)3-s + (0.309 − 0.951i)4-s − 3.34·5-s + 3.06·6-s + (0.778 − 2.39i)7-s + (0.309 + 0.951i)8-s + (1.98 + 6.10i)9-s + (2.70 − 1.96i)10-s + (0.532 − 1.63i)11-s + (−2.48 + 1.80i)12-s + (−1.89 − 1.37i)13-s + (0.778 + 2.39i)14-s + (8.30 + 6.03i)15-s + (−0.809 − 0.587i)16-s + (−0.244 − 0.751i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−1.43 − 1.04i)3-s + (0.154 − 0.475i)4-s − 1.49·5-s + 1.25·6-s + (0.294 − 0.905i)7-s + (0.109 + 0.336i)8-s + (0.660 + 2.03i)9-s + (0.856 − 0.622i)10-s + (0.160 − 0.493i)11-s + (−0.716 + 0.520i)12-s + (−0.524 − 0.381i)13-s + (0.208 + 0.640i)14-s + (2.14 + 1.55i)15-s + (−0.202 − 0.146i)16-s + (−0.0592 − 0.182i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.632 + 0.774i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.632 + 0.774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.110453 - 0.232790i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.110453 - 0.232790i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 31 | \( 1 + (2.94 + 4.72i)T \) |
good | 3 | \( 1 + (2.48 + 1.80i)T + (0.927 + 2.85i)T^{2} \) |
| 5 | \( 1 + 3.34T + 5T^{2} \) |
| 7 | \( 1 + (-0.778 + 2.39i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-0.532 + 1.63i)T + (-8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (1.89 + 1.37i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (0.244 + 0.751i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (0.326 - 0.237i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (1.56 + 4.82i)T + (-18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (-4.20 + 3.05i)T + (8.96 - 27.5i)T^{2} \) |
| 37 | \( 1 - 5.88T + 37T^{2} \) |
| 41 | \( 1 + (6.27 - 4.55i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (6.18 - 4.49i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (-3.91 - 2.84i)T + (14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (0.812 + 2.50i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-3.53 - 2.56i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 - 9.60T + 61T^{2} \) |
| 67 | \( 1 + 8.86T + 67T^{2} \) |
| 71 | \( 1 + (3.67 + 11.3i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-2.42 + 7.46i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (0.647 + 1.99i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-9.91 + 7.20i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-4.52 + 13.9i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (5.80 - 17.8i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.84105808829343827128651832584, −13.32118598358311364819476276825, −12.04830870113434911594594002346, −11.35322138343677216334297768293, −10.42839831957398250364652229503, −8.084713337209179841156464133380, −7.42762993573266940455642050829, −6.32879942218616763432580163970, −4.62471239985438708758071791465, −0.52794830710636374841122311341,
3.90876293882549813645689938395, 5.17421994580105140924874448250, 7.02433093754683480321980441038, 8.641589770895490413279627901432, 9.925928103569091533928827566888, 11.07852658016628757061879254060, 11.87654670486565723422814686458, 12.27454015721469397683425761836, 14.97599187101665572405420121795, 15.64379536778173587906620411901