L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.531 + 1.63i)3-s + (−0.809 + 0.587i)4-s − 1.68·5-s − 1.72·6-s + (3.90 − 2.83i)7-s + (−0.809 − 0.587i)8-s + (0.0317 + 0.0230i)9-s + (−0.519 − 1.59i)10-s + (1.13 − 0.824i)11-s + (−0.531 − 1.63i)12-s + (−0.933 + 2.87i)13-s + (3.90 + 2.83i)14-s + (0.894 − 2.75i)15-s + (0.309 − 0.951i)16-s + (−5.76 − 4.18i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.306 + 0.944i)3-s + (−0.404 + 0.293i)4-s − 0.751·5-s − 0.702·6-s + (1.47 − 1.07i)7-s + (−0.286 − 0.207i)8-s + (0.0105 + 0.00768i)9-s + (−0.164 − 0.505i)10-s + (0.342 − 0.248i)11-s + (−0.153 − 0.472i)12-s + (−0.258 + 0.796i)13-s + (1.04 + 0.757i)14-s + (0.230 − 0.710i)15-s + (0.0772 − 0.237i)16-s + (−1.39 − 1.01i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.118 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.118 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.653376 + 0.579815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.653376 + 0.579815i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 31 | \( 1 + (-4.75 + 2.89i)T \) |
good | 3 | \( 1 + (0.531 - 1.63i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + 1.68T + 5T^{2} \) |
| 7 | \( 1 + (-3.90 + 2.83i)T + (2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (-1.13 + 0.824i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (0.933 - 2.87i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (5.76 + 4.18i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.15 + 3.56i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-0.225 - 0.164i)T + (7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-0.980 - 3.01i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 - 3.08T + 37T^{2} \) |
| 41 | \( 1 + (-1.74 - 5.35i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-0.838 - 2.58i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (2.53 - 7.81i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (1.54 + 1.12i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-4.13 + 12.7i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + 8.91T + 61T^{2} \) |
| 67 | \( 1 + 5.84T + 67T^{2} \) |
| 71 | \( 1 + (-0.153 - 0.111i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (12.0 - 8.76i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-10.6 - 7.75i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.46 - 10.6i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (0.0186 - 0.0135i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.45 + 2.51i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.38663393168025664220179671324, −14.39093179670177289049993056973, −13.45141810222322211965326748423, −11.49333207802047977814707549921, −11.04020535279676557387453846619, −9.414859428409754013464381282983, −8.018642432460351431146768707336, −6.92411157106339607658690577727, −4.68812954894910771822191929594, −4.33499688441599173565019927675,
1.93691816174177389332914676990, 4.38077387267054957572429698924, 5.98649536169807888639759264442, 7.74335929958145719841322336847, 8.694769349365105849254802511327, 10.60858672742274134585288541438, 11.85163449879380182808129054085, 12.14710518434155973111437647655, 13.35359559233243072290982927255, 14.84691343591709449998792834491