L(s) = 1 | − 1.48i·3-s − 4.43·5-s − 2.39·7-s + 6.80·9-s + 12.1·11-s − 3.28i·13-s + 6.57i·15-s − 7.93·17-s + (18.4 + 4.71i)19-s + 3.54i·21-s − 22.6·23-s − 5.33·25-s − 23.4i·27-s − 42.2i·29-s − 6.86i·31-s + ⋯ |
L(s) = 1 | − 0.494i·3-s − 0.887·5-s − 0.341·7-s + 0.755·9-s + 1.10·11-s − 0.252i·13-s + 0.438i·15-s − 0.466·17-s + (0.968 + 0.248i)19-s + 0.168i·21-s − 0.985·23-s − 0.213·25-s − 0.867i·27-s − 1.45i·29-s − 0.221i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.267478154\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.267478154\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-18.4 - 4.71i)T \) |
good | 3 | \( 1 + 1.48iT - 9T^{2} \) |
| 5 | \( 1 + 4.43T + 25T^{2} \) |
| 7 | \( 1 + 2.39T + 49T^{2} \) |
| 11 | \( 1 - 12.1T + 121T^{2} \) |
| 13 | \( 1 + 3.28iT - 169T^{2} \) |
| 17 | \( 1 + 7.93T + 289T^{2} \) |
| 23 | \( 1 + 22.6T + 529T^{2} \) |
| 29 | \( 1 + 42.2iT - 841T^{2} \) |
| 31 | \( 1 + 6.86iT - 961T^{2} \) |
| 37 | \( 1 + 40.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 59.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 1.93T + 1.84e3T^{2} \) |
| 47 | \( 1 - 12.5T + 2.20e3T^{2} \) |
| 53 | \( 1 + 89.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 51.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 14.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 74.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 88.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 8.33T + 5.32e3T^{2} \) |
| 79 | \( 1 - 7.24iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 55.6T + 6.88e3T^{2} \) |
| 89 | \( 1 + 11.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 20.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06692122469431409739014707101, −9.397290199968407616913580028353, −8.235233484626881230276565647605, −7.50397581438897112803937436586, −6.74659545311648512964131749368, −5.77507271325719062396131653603, −4.25510652568701711861020716336, −3.66586303707008178684698063886, −1.99865985893481326120369677561, −0.51963538450747291883232204418,
1.37198133088595991435255823281, 3.26058539348311106367074380940, 4.07246619175203240204032511698, 4.88174211268247061313148320212, 6.34088960083639821709628359158, 7.11551768922271361363390755322, 8.040670908066725364546575359746, 9.142491789069016945109802910883, 9.712375638929093633424258129484, 10.69059506506444174803436819855