L(s) = 1 | − 3.94i·3-s − 7.51·5-s − 11.4·7-s − 6.58·9-s − 14.4·11-s − 23.9i·13-s + 29.6i·15-s + 26.8·17-s + (13.2 + 13.6i)19-s + 45.1i·21-s + 0.456·23-s + 31.4·25-s − 9.52i·27-s + 7.85i·29-s + 16.0i·31-s + ⋯ |
L(s) = 1 | − 1.31i·3-s − 1.50·5-s − 1.63·7-s − 0.731·9-s − 1.31·11-s − 1.84i·13-s + 1.97i·15-s + 1.57·17-s + (0.694 + 0.719i)19-s + 2.14i·21-s + 0.0198·23-s + 1.25·25-s − 0.352i·27-s + 0.270i·29-s + 0.519i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.719 - 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2157249326\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2157249326\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-13.2 - 13.6i)T \) |
good | 3 | \( 1 + 3.94iT - 9T^{2} \) |
| 5 | \( 1 + 7.51T + 25T^{2} \) |
| 7 | \( 1 + 11.4T + 49T^{2} \) |
| 11 | \( 1 + 14.4T + 121T^{2} \) |
| 13 | \( 1 + 23.9iT - 169T^{2} \) |
| 17 | \( 1 - 26.8T + 289T^{2} \) |
| 23 | \( 1 - 0.456T + 529T^{2} \) |
| 29 | \( 1 - 7.85iT - 841T^{2} \) |
| 31 | \( 1 - 16.0iT - 961T^{2} \) |
| 37 | \( 1 - 12.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 48.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 30.5T + 1.84e3T^{2} \) |
| 47 | \( 1 + 44.3T + 2.20e3T^{2} \) |
| 53 | \( 1 + 48.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 43.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 3.64T + 3.72e3T^{2} \) |
| 67 | \( 1 + 75.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 19.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 83.0T + 5.32e3T^{2} \) |
| 79 | \( 1 + 73.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 4.27T + 6.88e3T^{2} \) |
| 89 | \( 1 - 105. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 177. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41971114371143218386116242680, −9.921058521793265999255533823053, −8.233273332017095237030922860262, −7.82630820617883831602277327831, −7.26645506133303001179617817694, −6.16814114521832532171417713278, −5.23469769545757249121185784701, −3.30778759047001706073470165536, −3.08977200972810937919996657429, −0.858650816866717096316850293837,
0.11288936666889093029937205909, 2.98853461336825110978250799668, 3.68244821701086017835560278715, 4.47406200806519431505521209768, 5.53773410257378591088338117921, 6.90266779840636898063625421784, 7.63394686271430890924040872785, 8.816375431687296458956957757443, 9.628562441135841070373998340273, 10.15488980712967097531683444069