L(s) = 1 | − 4.61i·3-s + 3.04·5-s + 10.5·7-s − 12.2·9-s − 0.744·11-s − 9.55i·13-s − 14.0i·15-s + 9.60·17-s + (18.6 + 3.65i)19-s − 48.7i·21-s + 33.8·23-s − 15.7·25-s + 15.2i·27-s − 14.7i·29-s + 32.7i·31-s + ⋯ |
L(s) = 1 | − 1.53i·3-s + 0.608·5-s + 1.50·7-s − 1.36·9-s − 0.0677·11-s − 0.734i·13-s − 0.936i·15-s + 0.564·17-s + (0.981 + 0.192i)19-s − 2.32i·21-s + 1.47·23-s − 0.629·25-s + 0.563i·27-s − 0.509i·29-s + 1.05i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.192 + 0.981i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.192 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.427153534\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.427153534\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-18.6 - 3.65i)T \) |
good | 3 | \( 1 + 4.61iT - 9T^{2} \) |
| 5 | \( 1 - 3.04T + 25T^{2} \) |
| 7 | \( 1 - 10.5T + 49T^{2} \) |
| 11 | \( 1 + 0.744T + 121T^{2} \) |
| 13 | \( 1 + 9.55iT - 169T^{2} \) |
| 17 | \( 1 - 9.60T + 289T^{2} \) |
| 23 | \( 1 - 33.8T + 529T^{2} \) |
| 29 | \( 1 + 14.7iT - 841T^{2} \) |
| 31 | \( 1 - 32.7iT - 961T^{2} \) |
| 37 | \( 1 + 26.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 35.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 6.65T + 1.84e3T^{2} \) |
| 47 | \( 1 + 83.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 1.90iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 86.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 81.2T + 3.72e3T^{2} \) |
| 67 | \( 1 - 76.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 72.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 49.5T + 5.32e3T^{2} \) |
| 79 | \( 1 - 83.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 22.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + 143. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 27.2iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30804417374842652362752981019, −9.149572296924673749007062262052, −8.002620815028145269873041679290, −7.74635508698598604076187211097, −6.70918140573588747168010782655, −5.65073403741238347398373725209, −4.95063674892070121051266534173, −3.04954134012859019852946825884, −1.80218344395742809977584670433, −1.05200726043608828051780430274,
1.56879089235481287603791972171, 3.09170563102569004632874196053, 4.34080493174500920697240383434, 5.01515250621139395730506455332, 5.72044874885207927337160087197, 7.22726384596286434980114617275, 8.280933076230250899603769810520, 9.209315294889198122804138789342, 9.733117439297282650156616020615, 10.69548892920890573325479390987