L(s) = 1 | + 4.61i·3-s + 3.04·5-s − 10.5·7-s − 12.2·9-s + 0.744·11-s − 9.55i·13-s + 14.0i·15-s + 9.60·17-s + (−18.6 − 3.65i)19-s − 48.7i·21-s − 33.8·23-s − 15.7·25-s − 15.2i·27-s − 14.7i·29-s − 32.7i·31-s + ⋯ |
L(s) = 1 | + 1.53i·3-s + 0.608·5-s − 1.50·7-s − 1.36·9-s + 0.0677·11-s − 0.734i·13-s + 0.936i·15-s + 0.564·17-s + (−0.981 − 0.192i)19-s − 2.32i·21-s − 1.47·23-s − 0.629·25-s − 0.563i·27-s − 0.509i·29-s − 1.05i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.192 + 0.981i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.192 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.07404911020\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.07404911020\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (18.6 + 3.65i)T \) |
good | 3 | \( 1 - 4.61iT - 9T^{2} \) |
| 5 | \( 1 - 3.04T + 25T^{2} \) |
| 7 | \( 1 + 10.5T + 49T^{2} \) |
| 11 | \( 1 - 0.744T + 121T^{2} \) |
| 13 | \( 1 + 9.55iT - 169T^{2} \) |
| 17 | \( 1 - 9.60T + 289T^{2} \) |
| 23 | \( 1 + 33.8T + 529T^{2} \) |
| 29 | \( 1 + 14.7iT - 841T^{2} \) |
| 31 | \( 1 + 32.7iT - 961T^{2} \) |
| 37 | \( 1 + 26.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 35.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 6.65T + 1.84e3T^{2} \) |
| 47 | \( 1 - 83.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 1.90iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 86.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 81.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + 76.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 72.4iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 49.5T + 5.32e3T^{2} \) |
| 79 | \( 1 + 83.0iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 22.0T + 6.88e3T^{2} \) |
| 89 | \( 1 + 143. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 27.2iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10676150595722745038125845117, −9.592277052197316451275030374307, −8.850129197368362386228432510266, −7.61793799713175990189681935124, −6.06298918524970703906997095949, −5.82327971750799102292914013852, −4.36522215873531274357137105213, −3.60556473027606413037309749718, −2.53207935183094388489401632799, −0.02584898643312428507093851756,
1.57394529696449069364929687802, 2.57129716383923805108056065299, 3.86782250277526619141314511301, 5.67662350563398879255839366870, 6.38528595802182009381516845220, 6.88051497002834809765055939942, 7.903486958585285368882130686741, 8.904097390154684316121174269710, 9.775190099143370870822362992807, 10.58193545375830033976647633188