L(s) = 1 | + 1.48i·3-s − 4.43·5-s + 2.39·7-s + 6.80·9-s − 12.1·11-s − 3.28i·13-s − 6.57i·15-s − 7.93·17-s + (−18.4 − 4.71i)19-s + 3.54i·21-s + 22.6·23-s − 5.33·25-s + 23.4i·27-s − 42.2i·29-s + 6.86i·31-s + ⋯ |
L(s) = 1 | + 0.494i·3-s − 0.887·5-s + 0.341·7-s + 0.755·9-s − 1.10·11-s − 0.252i·13-s − 0.438i·15-s − 0.466·17-s + (−0.968 − 0.248i)19-s + 0.168i·21-s + 0.985·23-s − 0.213·25-s + 0.867i·27-s − 1.45i·29-s + 0.221i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6627288842\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6627288842\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (18.4 + 4.71i)T \) |
good | 3 | \( 1 - 1.48iT - 9T^{2} \) |
| 5 | \( 1 + 4.43T + 25T^{2} \) |
| 7 | \( 1 - 2.39T + 49T^{2} \) |
| 11 | \( 1 + 12.1T + 121T^{2} \) |
| 13 | \( 1 + 3.28iT - 169T^{2} \) |
| 17 | \( 1 + 7.93T + 289T^{2} \) |
| 23 | \( 1 - 22.6T + 529T^{2} \) |
| 29 | \( 1 + 42.2iT - 841T^{2} \) |
| 31 | \( 1 - 6.86iT - 961T^{2} \) |
| 37 | \( 1 + 40.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 59.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 1.93T + 1.84e3T^{2} \) |
| 47 | \( 1 + 12.5T + 2.20e3T^{2} \) |
| 53 | \( 1 + 89.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 51.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 14.1T + 3.72e3T^{2} \) |
| 67 | \( 1 - 74.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 88.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 8.33T + 5.32e3T^{2} \) |
| 79 | \( 1 + 7.24iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 55.6T + 6.88e3T^{2} \) |
| 89 | \( 1 + 11.8iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 20.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36375101289870205671044772252, −9.351754576342856655400722581280, −8.325056541574291308210266585875, −7.65022835328243004685924530411, −6.74018100007768518779367383946, −5.33771848863779071396824331198, −4.49560835775105283250073810760, −3.65344805044551035974289394022, −2.22035080444620030928854391545, −0.25054723427883230467204399628,
1.44615467018311376872305746156, 2.85750303512464069234023165682, 4.21901980293026779460613239681, 4.98690022561005927290764787791, 6.39703532930893089938315678004, 7.26438307028740765167016038466, 7.955702034994338260005107147281, 8.705844391463069853866253897676, 9.935222639212620335689974181755, 10.82239810344177391468554881700