Properties

Label 2-608-19.18-c2-0-31
Degree $2$
Conductor $608$
Sign $0.924 + 0.381i$
Analytic cond. $16.5668$
Root an. cond. $4.07023$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.682i·3-s + 6.57·5-s + 8.44·7-s + 8.53·9-s + 2.26·11-s − 19.5i·13-s − 4.48i·15-s + 7.76·17-s + (−7.24 + 17.5i)19-s − 5.76i·21-s − 27.5·23-s + 18.2·25-s − 11.9i·27-s + 48.3i·29-s + 18.1i·31-s + ⋯
L(s)  = 1  − 0.227i·3-s + 1.31·5-s + 1.20·7-s + 0.948·9-s + 0.205·11-s − 1.50i·13-s − 0.299i·15-s + 0.456·17-s + (−0.381 + 0.924i)19-s − 0.274i·21-s − 1.19·23-s + 0.729·25-s − 0.443i·27-s + 1.66i·29-s + 0.586i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $0.924 + 0.381i$
Analytic conductor: \(16.5668\)
Root analytic conductor: \(4.07023\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{608} (417, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 608,\ (\ :1),\ 0.924 + 0.381i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.808933527\)
\(L(\frac12)\) \(\approx\) \(2.808933527\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (7.24 - 17.5i)T \)
good3 \( 1 + 0.682iT - 9T^{2} \)
5 \( 1 - 6.57T + 25T^{2} \)
7 \( 1 - 8.44T + 49T^{2} \)
11 \( 1 - 2.26T + 121T^{2} \)
13 \( 1 + 19.5iT - 169T^{2} \)
17 \( 1 - 7.76T + 289T^{2} \)
23 \( 1 + 27.5T + 529T^{2} \)
29 \( 1 - 48.3iT - 841T^{2} \)
31 \( 1 - 18.1iT - 961T^{2} \)
37 \( 1 + 42.8iT - 1.36e3T^{2} \)
41 \( 1 + 19.0iT - 1.68e3T^{2} \)
43 \( 1 + 74.5T + 1.84e3T^{2} \)
47 \( 1 - 38.1T + 2.20e3T^{2} \)
53 \( 1 + 8.32iT - 2.80e3T^{2} \)
59 \( 1 + 66.1iT - 3.48e3T^{2} \)
61 \( 1 - 50.5T + 3.72e3T^{2} \)
67 \( 1 + 69.4iT - 4.48e3T^{2} \)
71 \( 1 - 48.1iT - 5.04e3T^{2} \)
73 \( 1 - 71.7T + 5.32e3T^{2} \)
79 \( 1 - 147. iT - 6.24e3T^{2} \)
83 \( 1 + 103.T + 6.88e3T^{2} \)
89 \( 1 - 143. iT - 7.92e3T^{2} \)
97 \( 1 + 49.3iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27548701838307969051895852591, −9.776578400129348684968676716997, −8.498037305896028714018119207384, −7.83406435385971833292934848943, −6.78040384789597486891115402493, −5.66403563237651695896969562574, −5.10183981294612074684296469816, −3.69766566378379783615603651928, −2.08134643207869606898978162288, −1.30676262098896211302628973242, 1.51026513745120956345211331146, 2.21555816351295834064360031185, 4.16799342300059875991516467312, 4.80481272600911327312374357070, 5.98170548128520259593417877362, 6.79545384357501587571442735317, 7.889662691951327838883691591145, 8.909586262755543636630522111054, 9.767034748277112204978316574424, 10.22760196885573544947824356191

Graph of the $Z$-function along the critical line