L(s) = 1 | − 0.682i·3-s + 6.57·5-s + 8.44·7-s + 8.53·9-s + 2.26·11-s − 19.5i·13-s − 4.48i·15-s + 7.76·17-s + (−7.24 + 17.5i)19-s − 5.76i·21-s − 27.5·23-s + 18.2·25-s − 11.9i·27-s + 48.3i·29-s + 18.1i·31-s + ⋯ |
L(s) = 1 | − 0.227i·3-s + 1.31·5-s + 1.20·7-s + 0.948·9-s + 0.205·11-s − 1.50i·13-s − 0.299i·15-s + 0.456·17-s + (−0.381 + 0.924i)19-s − 0.274i·21-s − 1.19·23-s + 0.729·25-s − 0.443i·27-s + 1.66i·29-s + 0.586i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.924 + 0.381i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.808933527\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.808933527\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (7.24 - 17.5i)T \) |
good | 3 | \( 1 + 0.682iT - 9T^{2} \) |
| 5 | \( 1 - 6.57T + 25T^{2} \) |
| 7 | \( 1 - 8.44T + 49T^{2} \) |
| 11 | \( 1 - 2.26T + 121T^{2} \) |
| 13 | \( 1 + 19.5iT - 169T^{2} \) |
| 17 | \( 1 - 7.76T + 289T^{2} \) |
| 23 | \( 1 + 27.5T + 529T^{2} \) |
| 29 | \( 1 - 48.3iT - 841T^{2} \) |
| 31 | \( 1 - 18.1iT - 961T^{2} \) |
| 37 | \( 1 + 42.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 19.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 74.5T + 1.84e3T^{2} \) |
| 47 | \( 1 - 38.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 8.32iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 66.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 50.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + 69.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 48.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 71.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 147. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 103.T + 6.88e3T^{2} \) |
| 89 | \( 1 - 143. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 49.3iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27548701838307969051895852591, −9.776578400129348684968676716997, −8.498037305896028714018119207384, −7.83406435385971833292934848943, −6.78040384789597486891115402493, −5.66403563237651695896969562574, −5.10183981294612074684296469816, −3.69766566378379783615603651928, −2.08134643207869606898978162288, −1.30676262098896211302628973242,
1.51026513745120956345211331146, 2.21555816351295834064360031185, 4.16799342300059875991516467312, 4.80481272600911327312374357070, 5.98170548128520259593417877362, 6.79545384357501587571442735317, 7.889662691951327838883691591145, 8.909586262755543636630522111054, 9.767034748277112204978316574424, 10.22760196885573544947824356191