L(s) = 1 | + (−0.179 − 0.103i)3-s + (0.520 + 0.300i)5-s − 4.27i·7-s + (−1.47 − 2.56i)9-s − 5.11·11-s + (1.55 + 2.68i)13-s + (−0.0621 − 0.107i)15-s + (−1.52 + 2.64i)17-s + (−3.31 − 2.83i)19-s + (−0.442 + 0.765i)21-s + (−4.65 + 2.68i)23-s + (−2.31 − 4.01i)25-s + 1.23i·27-s + (−3.77 − 6.53i)29-s + 9.59·31-s + ⋯ |
L(s) = 1 | + (−0.103 − 0.0597i)3-s + (0.232 + 0.134i)5-s − 1.61i·7-s + (−0.492 − 0.853i)9-s − 1.54·11-s + (0.430 + 0.745i)13-s + (−0.0160 − 0.0277i)15-s + (−0.371 + 0.642i)17-s + (−0.759 − 0.650i)19-s + (−0.0964 + 0.167i)21-s + (−0.969 + 0.559i)23-s + (−0.463 − 0.803i)25-s + 0.237i·27-s + (−0.701 − 1.21i)29-s + 1.72·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.669 + 0.742i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.332456 - 0.747852i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.332456 - 0.747852i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (3.31 + 2.83i)T \) |
good | 3 | \( 1 + (0.179 + 0.103i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.520 - 0.300i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 4.27iT - 7T^{2} \) |
| 11 | \( 1 + 5.11T + 11T^{2} \) |
| 13 | \( 1 + (-1.55 - 2.68i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.52 - 2.64i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (4.65 - 2.68i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.77 + 6.53i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.59T + 31T^{2} \) |
| 37 | \( 1 - 4.44T + 37T^{2} \) |
| 41 | \( 1 + (0.253 + 0.146i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.892 + 1.54i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.79 + 3.34i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.16 + 8.94i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.849 - 0.490i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.08 + 2.93i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.98 - 3.45i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.173 - 0.300i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.61 + 7.99i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.63 - 6.29i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.38T + 83T^{2} \) |
| 89 | \( 1 + (-5.44 + 3.14i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.87 - 4.54i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32733145143064856988603070652, −9.701385941162533733283390362255, −8.415829477135248978550830165335, −7.71607867620793055756459275184, −6.62755302083272087518925661121, −5.98917330237096579064490394771, −4.52392670207257086522480565329, −3.75101999818955606995648729791, −2.28117533425056017096788160917, −0.42543600275817084739360916375,
2.20680548360523759286929587434, 2.90110830910986330030680666502, 4.75436937693080175788703455086, 5.57304332863625095243209792652, 6.06852737520597504379988776735, 7.75592462273385497996171233399, 8.292257897764895174078901807574, 9.116155595259266514535928490125, 10.22280873130424300106690053724, 10.87709775970042914384552811946