L(s) = 1 | + (2.65 + 1.53i)3-s + (−2.25 − 1.30i)5-s + 4.30i·7-s + (3.20 + 5.54i)9-s + 0.349·11-s + (0.839 + 1.45i)13-s + (−3.99 − 6.92i)15-s + (0.357 − 0.618i)17-s + (−4.35 − 0.268i)19-s + (−6.59 + 11.4i)21-s + (1.38 − 0.797i)23-s + (0.895 + 1.55i)25-s + 10.4i·27-s + (0.463 + 0.803i)29-s + 2.80·31-s + ⋯ |
L(s) = 1 | + (1.53 + 0.885i)3-s + (−1.00 − 0.582i)5-s + 1.62i·7-s + (1.06 + 1.84i)9-s + 0.105·11-s + (0.232 + 0.403i)13-s + (−1.03 − 1.78i)15-s + (0.0865 − 0.149i)17-s + (−0.998 − 0.0615i)19-s + (−1.43 + 2.49i)21-s + (0.287 − 0.166i)23-s + (0.179 + 0.310i)25-s + 2.00i·27-s + (0.0860 + 0.149i)29-s + 0.503·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0172 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0172 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43820 + 1.41361i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43820 + 1.41361i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (4.35 + 0.268i)T \) |
good | 3 | \( 1 + (-2.65 - 1.53i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (2.25 + 1.30i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 4.30iT - 7T^{2} \) |
| 11 | \( 1 - 0.349T + 11T^{2} \) |
| 13 | \( 1 + (-0.839 - 1.45i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.357 + 0.618i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.38 + 0.797i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.463 - 0.803i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.80T + 31T^{2} \) |
| 37 | \( 1 - 10.2T + 37T^{2} \) |
| 41 | \( 1 + (-4.87 - 2.81i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.32 - 7.48i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.26 + 3.61i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.73 + 8.20i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.62 + 3.82i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.46 - 2.00i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.6 + 6.12i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.09 + 8.82i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.54 + 4.40i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.31 + 2.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4.69T + 83T^{2} \) |
| 89 | \( 1 + (-7.37 + 4.25i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.30 - 3.63i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81157361637825377342531455106, −9.474571910037670618675045546084, −9.165672975836866202991192257263, −8.215327239260751407409934381610, −8.020724833079469235288407885113, −6.35595245124489109467996560015, −4.91595510772620923939479369532, −4.23161297071686565261170022498, −3.14304972278818695917504914591, −2.18502660608528503568115913037,
1.00785052251077847161472143239, 2.62380273248191343793938389039, 3.68914862708436636649918105405, 4.19474003809256161304421644936, 6.41194022892123764924386534274, 7.22535899534249062377815008177, 7.73000693804715028802136314914, 8.330231442827516062282250934603, 9.420468127689507135988716256128, 10.47565413003531863922469986961