L(s) = 1 | − 1.26i·3-s − 3.51i·5-s − 2.23i·7-s + 1.40·9-s − 2.89·11-s + 6.30·13-s − 4.43·15-s − 4.79·17-s + (−0.895 + 4.26i)19-s − 2.82·21-s − 0.524i·23-s − 7.38·25-s − 5.56i·27-s − 0.415·29-s + 1.20·31-s + ⋯ |
L(s) = 1 | − 0.728i·3-s − 1.57i·5-s − 0.845i·7-s + 0.469·9-s − 0.872·11-s + 1.74·13-s − 1.14·15-s − 1.16·17-s + (−0.205 + 0.978i)19-s − 0.615·21-s − 0.109i·23-s − 1.47·25-s − 1.07i·27-s − 0.0771·29-s + 0.216·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.718 + 0.695i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.718 + 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.528986 - 1.30737i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.528986 - 1.30737i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (0.895 - 4.26i)T \) |
good | 3 | \( 1 + 1.26iT - 3T^{2} \) |
| 5 | \( 1 + 3.51iT - 5T^{2} \) |
| 7 | \( 1 + 2.23iT - 7T^{2} \) |
| 11 | \( 1 + 2.89T + 11T^{2} \) |
| 13 | \( 1 - 6.30T + 13T^{2} \) |
| 17 | \( 1 + 4.79T + 17T^{2} \) |
| 23 | \( 1 + 0.524iT - 23T^{2} \) |
| 29 | \( 1 + 0.415T + 29T^{2} \) |
| 31 | \( 1 - 1.20T + 31T^{2} \) |
| 37 | \( 1 + 5.88T + 37T^{2} \) |
| 41 | \( 1 - 4.87iT - 41T^{2} \) |
| 43 | \( 1 - 10.6T + 43T^{2} \) |
| 47 | \( 1 + 4.27iT - 47T^{2} \) |
| 53 | \( 1 + 6.05T + 53T^{2} \) |
| 59 | \( 1 - 8.08iT - 59T^{2} \) |
| 61 | \( 1 + 8.38iT - 61T^{2} \) |
| 67 | \( 1 + 9.79iT - 67T^{2} \) |
| 71 | \( 1 - 10.2T + 71T^{2} \) |
| 73 | \( 1 - 7.76T + 73T^{2} \) |
| 79 | \( 1 + 7.33T + 79T^{2} \) |
| 83 | \( 1 + 2T + 83T^{2} \) |
| 89 | \( 1 - 12.1iT - 89T^{2} \) |
| 97 | \( 1 + 2.19iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40747680570945906319193670074, −9.286180557192045611825125511429, −8.372622967464181823661299329271, −7.88354128251178904104183671002, −6.73864148902304733726370301043, −5.79483852975750999474009944853, −4.62203039216079875259067480429, −3.84268292788005262895035249660, −1.81796771242166068759583685078, −0.820865092014398801765497966800,
2.27663457949852434079739106219, 3.26239094933155171026850961066, 4.29436123806502571418541421781, 5.58328188334030538676973716551, 6.48729933519376658203238532039, 7.27585229322549331259317349233, 8.527072621161898494582525014887, 9.268082570501736604061050453712, 10.35719039214751599298517757200, 10.92146458018460582844574763435