Properties

Label 2-6069-1.1-c1-0-96
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.79·2-s − 3-s + 1.21·4-s + 1.56·5-s − 1.79·6-s − 7-s − 1.40·8-s + 9-s + 2.79·10-s + 2.49·11-s − 1.21·12-s + 0.908·13-s − 1.79·14-s − 1.56·15-s − 4.95·16-s + 1.79·18-s + 3.82·19-s + 1.90·20-s + 21-s + 4.48·22-s + 2.25·23-s + 1.40·24-s − 2.56·25-s + 1.63·26-s − 27-s − 1.21·28-s + 1.57·29-s + ⋯
L(s)  = 1  + 1.26·2-s − 0.577·3-s + 0.609·4-s + 0.697·5-s − 0.732·6-s − 0.377·7-s − 0.495·8-s + 0.333·9-s + 0.885·10-s + 0.753·11-s − 0.351·12-s + 0.251·13-s − 0.479·14-s − 0.402·15-s − 1.23·16-s + 0.422·18-s + 0.877·19-s + 0.425·20-s + 0.218·21-s + 0.955·22-s + 0.470·23-s + 0.286·24-s − 0.512·25-s + 0.319·26-s − 0.192·27-s − 0.230·28-s + 0.291·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.473953360\)
\(L(\frac12)\) \(\approx\) \(3.473953360\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - 1.79T + 2T^{2} \)
5 \( 1 - 1.56T + 5T^{2} \)
11 \( 1 - 2.49T + 11T^{2} \)
13 \( 1 - 0.908T + 13T^{2} \)
19 \( 1 - 3.82T + 19T^{2} \)
23 \( 1 - 2.25T + 23T^{2} \)
29 \( 1 - 1.57T + 29T^{2} \)
31 \( 1 - 4.98T + 31T^{2} \)
37 \( 1 + 0.783T + 37T^{2} \)
41 \( 1 + 0.437T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 - 3.90T + 47T^{2} \)
53 \( 1 - 5.60T + 53T^{2} \)
59 \( 1 + 10.1T + 59T^{2} \)
61 \( 1 - 13.9T + 61T^{2} \)
67 \( 1 + 5.28T + 67T^{2} \)
71 \( 1 - 7.55T + 71T^{2} \)
73 \( 1 - 2.51T + 73T^{2} \)
79 \( 1 - 14.4T + 79T^{2} \)
83 \( 1 - 8.42T + 83T^{2} \)
89 \( 1 + 5.94T + 89T^{2} \)
97 \( 1 - 1.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.932216221087817382832113544574, −6.82810653135202140593094010565, −6.51550072673307614334198748365, −5.76162753885094498501692626049, −5.29078308585330532231447746879, −4.51878049302168311277963498908, −3.75595325915802049158846348921, −3.05158365197355961962881720916, −2.04040574249054268826538346710, −0.843622595930198859915767335810, 0.843622595930198859915767335810, 2.04040574249054268826538346710, 3.05158365197355961962881720916, 3.75595325915802049158846348921, 4.51878049302168311277963498908, 5.29078308585330532231447746879, 5.76162753885094498501692626049, 6.51550072673307614334198748365, 6.82810653135202140593094010565, 7.932216221087817382832113544574

Graph of the $Z$-function along the critical line