Properties

Label 2-6069-1.1-c1-0-254
Degree $2$
Conductor $6069$
Sign $-1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.72·2-s − 3-s + 5.42·4-s − 3.51·5-s − 2.72·6-s + 7-s + 9.32·8-s + 9-s − 9.57·10-s − 0.943·11-s − 5.42·12-s − 2.69·13-s + 2.72·14-s + 3.51·15-s + 14.5·16-s + 2.72·18-s − 6.62·19-s − 19.0·20-s − 21-s − 2.56·22-s + 4.68·23-s − 9.32·24-s + 7.34·25-s − 7.33·26-s − 27-s + 5.42·28-s − 8.44·29-s + ⋯
L(s)  = 1  + 1.92·2-s − 0.577·3-s + 2.71·4-s − 1.57·5-s − 1.11·6-s + 0.377·7-s + 3.29·8-s + 0.333·9-s − 3.02·10-s − 0.284·11-s − 1.56·12-s − 0.746·13-s + 0.728·14-s + 0.907·15-s + 3.64·16-s + 0.642·18-s − 1.52·19-s − 4.25·20-s − 0.218·21-s − 0.547·22-s + 0.976·23-s − 1.90·24-s + 1.46·25-s − 1.43·26-s − 0.192·27-s + 1.02·28-s − 1.56·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good2 \( 1 - 2.72T + 2T^{2} \)
5 \( 1 + 3.51T + 5T^{2} \)
11 \( 1 + 0.943T + 11T^{2} \)
13 \( 1 + 2.69T + 13T^{2} \)
19 \( 1 + 6.62T + 19T^{2} \)
23 \( 1 - 4.68T + 23T^{2} \)
29 \( 1 + 8.44T + 29T^{2} \)
31 \( 1 + 9.03T + 31T^{2} \)
37 \( 1 - 1.45T + 37T^{2} \)
41 \( 1 - 7.57T + 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 3.93T + 47T^{2} \)
53 \( 1 + 6.93T + 53T^{2} \)
59 \( 1 + 3.73T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 - 6.72T + 67T^{2} \)
71 \( 1 + 8.39T + 71T^{2} \)
73 \( 1 - 0.788T + 73T^{2} \)
79 \( 1 + 10.2T + 79T^{2} \)
83 \( 1 + 5.73T + 83T^{2} \)
89 \( 1 - 12.5T + 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47019977613494481579195730649, −6.89136700897609142305240428094, −6.16092919429906719091893329489, −5.19504986852068006921189645513, −4.88385645861917764766462175816, −4.04312158611968137395065474569, −3.66966867753732391769012948894, −2.66560915153251759170309286602, −1.70023337633236284852721302245, 0, 1.70023337633236284852721302245, 2.66560915153251759170309286602, 3.66966867753732391769012948894, 4.04312158611968137395065474569, 4.88385645861917764766462175816, 5.19504986852068006921189645513, 6.16092919429906719091893329489, 6.89136700897609142305240428094, 7.47019977613494481579195730649

Graph of the $Z$-function along the critical line