| L(s) = 1 | + 1.55·2-s + 0.404·4-s + 0.920·5-s − 2.53·7-s − 2.47·8-s + 1.42·10-s + 0.294·11-s + 5.74·13-s − 3.93·14-s − 4.64·16-s + 1.70·17-s − 4.65·19-s + 0.372·20-s + 0.456·22-s + 23-s − 4.15·25-s + 8.90·26-s − 1.02·28-s − 29-s + 4.26·31-s − 2.25·32-s + 2.64·34-s − 2.33·35-s − 8.67·37-s − 7.21·38-s − 2.27·40-s − 6.05·41-s + ⋯ |
| L(s) = 1 | + 1.09·2-s + 0.202·4-s + 0.411·5-s − 0.959·7-s − 0.874·8-s + 0.451·10-s + 0.0888·11-s + 1.59·13-s − 1.05·14-s − 1.16·16-s + 0.414·17-s − 1.06·19-s + 0.0832·20-s + 0.0974·22-s + 0.208·23-s − 0.830·25-s + 1.74·26-s − 0.194·28-s − 0.185·29-s + 0.766·31-s − 0.398·32-s + 0.453·34-s − 0.394·35-s − 1.42·37-s − 1.16·38-s − 0.359·40-s − 0.945·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6003 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + T \) |
| good | 2 | \( 1 - 1.55T + 2T^{2} \) |
| 5 | \( 1 - 0.920T + 5T^{2} \) |
| 7 | \( 1 + 2.53T + 7T^{2} \) |
| 11 | \( 1 - 0.294T + 11T^{2} \) |
| 13 | \( 1 - 5.74T + 13T^{2} \) |
| 17 | \( 1 - 1.70T + 17T^{2} \) |
| 19 | \( 1 + 4.65T + 19T^{2} \) |
| 31 | \( 1 - 4.26T + 31T^{2} \) |
| 37 | \( 1 + 8.67T + 37T^{2} \) |
| 41 | \( 1 + 6.05T + 41T^{2} \) |
| 43 | \( 1 - 10.0T + 43T^{2} \) |
| 47 | \( 1 + 1.68T + 47T^{2} \) |
| 53 | \( 1 + 3.05T + 53T^{2} \) |
| 59 | \( 1 + 3.88T + 59T^{2} \) |
| 61 | \( 1 + 1.83T + 61T^{2} \) |
| 67 | \( 1 + 7.06T + 67T^{2} \) |
| 71 | \( 1 + 0.554T + 71T^{2} \) |
| 73 | \( 1 + 13.8T + 73T^{2} \) |
| 79 | \( 1 + 11.6T + 79T^{2} \) |
| 83 | \( 1 - 9.84T + 83T^{2} \) |
| 89 | \( 1 - 0.967T + 89T^{2} \) |
| 97 | \( 1 - 3.92T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.60249221892739978657788921497, −6.53547123716413075447934854952, −6.20660119843376571374584226649, −5.69577661152277140287040697702, −4.78740802068037646434867717019, −3.93274106627783782273209264757, −3.46315225020014595449025604699, −2.66567636763183599707279853026, −1.49446033243511888126728580083, 0,
1.49446033243511888126728580083, 2.66567636763183599707279853026, 3.46315225020014595449025604699, 3.93274106627783782273209264757, 4.78740802068037646434867717019, 5.69577661152277140287040697702, 6.20660119843376571374584226649, 6.53547123716413075447934854952, 7.60249221892739978657788921497