L(s) = 1 | + 27i·3-s − 504i·7-s − 729·9-s + 3.81e3·11-s + 9.57e3i·13-s − 2.60e4i·17-s + 3.83e4·19-s + 1.36e4·21-s − 7.11e4i·23-s − 1.96e4i·27-s − 7.42e4·29-s − 2.75e5·31-s + 1.02e5i·33-s + 2.66e5i·37-s − 2.58e5·39-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.555i·7-s − 0.333·9-s + 0.863·11-s + 1.20i·13-s − 1.28i·17-s + 1.28·19-s + 0.320·21-s − 1.21i·23-s − 0.192i·27-s − 0.565·29-s − 1.66·31-s + 0.498i·33-s + 0.865i·37-s − 0.697·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.798715280\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.798715280\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 27iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + 504iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.81e3T + 1.94e7T^{2} \) |
| 13 | \( 1 - 9.57e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 2.60e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 3.83e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + 7.11e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 + 7.42e4T + 1.72e10T^{2} \) |
| 31 | \( 1 + 2.75e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 2.66e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 6.84e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 2.45e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 4.78e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 5.69e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.52e6T + 2.48e12T^{2} \) |
| 61 | \( 1 + 2.64e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 1.41e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 3.51e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 4.73e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 4.66e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 5.72e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 1.19e7T + 4.42e13T^{2} \) |
| 97 | \( 1 + 7.15e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.367300472474562533358670088482, −8.827910671563776059768094543270, −7.43916251976490443872808580599, −6.85463506165866628274147531397, −5.69061744073418056884554134961, −4.61499403499016270572858525093, −3.92989524971167734534060991116, −2.84001941120699009691344812448, −1.50637904505272312793679358633, −0.36805017783066326253133837463,
0.976687529344240556355495197289, 1.83219119473293629269526047490, 3.07876579308734491099830021451, 3.96030383693974213127401430265, 5.65678239707707286266305127878, 5.77219296543278303600907921956, 7.23590740110146610051688680840, 7.77708730511469745471234011518, 8.879475130471737418369162004332, 9.498341693621220550811978807955