Properties

Label 2-600-8.3-c2-0-13
Degree $2$
Conductor $600$
Sign $0.983 - 0.182i$
Analytic cond. $16.3488$
Root an. cond. $4.04336$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.10 − 1.66i)2-s − 1.73·3-s + (−1.56 + 3.68i)4-s + (1.91 + 2.88i)6-s + 2.13i·7-s + (7.86 − 1.45i)8-s + 2.99·9-s − 19.7·11-s + (2.70 − 6.37i)12-s − 21.1i·13-s + (3.56 − 2.35i)14-s + (−11.1 − 11.5i)16-s + 15.6·17-s + (−3.31 − 5.00i)18-s + 0.202·19-s + ⋯
L(s)  = 1  + (−0.551 − 0.833i)2-s − 0.577·3-s + (−0.390 + 0.920i)4-s + (0.318 + 0.481i)6-s + 0.305i·7-s + (0.983 − 0.182i)8-s + 0.333·9-s − 1.79·11-s + (0.225 − 0.531i)12-s − 1.62i·13-s + (0.254 − 0.168i)14-s + (−0.694 − 0.719i)16-s + 0.922·17-s + (−0.183 − 0.277i)18-s + 0.0106·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.182i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.983 - 0.182i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(600\)    =    \(2^{3} \cdot 3 \cdot 5^{2}\)
Sign: $0.983 - 0.182i$
Analytic conductor: \(16.3488\)
Root analytic conductor: \(4.04336\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{600} (451, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 600,\ (\ :1),\ 0.983 - 0.182i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7058585960\)
\(L(\frac12)\) \(\approx\) \(0.7058585960\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.10 + 1.66i)T \)
3 \( 1 + 1.73T \)
5 \( 1 \)
good7 \( 1 - 2.13iT - 49T^{2} \)
11 \( 1 + 19.7T + 121T^{2} \)
13 \( 1 + 21.1iT - 169T^{2} \)
17 \( 1 - 15.6T + 289T^{2} \)
19 \( 1 - 0.202T + 361T^{2} \)
23 \( 1 - 8.39iT - 529T^{2} \)
29 \( 1 - 49.6iT - 841T^{2} \)
31 \( 1 - 27.8iT - 961T^{2} \)
37 \( 1 + 35.9iT - 1.36e3T^{2} \)
41 \( 1 + 15.3T + 1.68e3T^{2} \)
43 \( 1 - 21.3T + 1.84e3T^{2} \)
47 \( 1 - 26.6iT - 2.20e3T^{2} \)
53 \( 1 - 79.4iT - 2.80e3T^{2} \)
59 \( 1 - 102.T + 3.48e3T^{2} \)
61 \( 1 + 36.6iT - 3.72e3T^{2} \)
67 \( 1 - 57.6T + 4.48e3T^{2} \)
71 \( 1 - 48.0iT - 5.04e3T^{2} \)
73 \( 1 + 10.9T + 5.32e3T^{2} \)
79 \( 1 - 48.2iT - 6.24e3T^{2} \)
83 \( 1 + 11.0T + 6.88e3T^{2} \)
89 \( 1 - 34.8T + 7.92e3T^{2} \)
97 \( 1 - 85.0T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52730332722245058326739268458, −9.987080994685087219821894389603, −8.783070640977732524091337299447, −7.896070027008342151901231720301, −7.28883598218640755974926288410, −5.55755814387963754767825481152, −5.09866867154146571198764572255, −3.45392976225104045490198229401, −2.56413851449521192432201918539, −0.905902448010943899300097147440, 0.46455922744830152748684119396, 2.14970712370193483279178878609, 4.17180484053306995525453230121, 5.11308645164172871081217041992, 5.96125826362783789371353986054, 6.91599846719629726495958231028, 7.71707642586798091490388125967, 8.481654749559083839143848325086, 9.760479475001609654426397531210, 10.14391066370111908877184434661

Graph of the $Z$-function along the critical line