L(s) = 1 | + (0.771 − 1.18i)2-s + (−1.57 + 0.713i)3-s + (−0.808 − 1.82i)4-s + (−0.373 + 2.42i)6-s + (−1.44 + 1.44i)7-s + (−2.79 − 0.454i)8-s + (1.98 − 2.25i)9-s − 0.641·11-s + (2.58 + 2.31i)12-s + (−2.03 + 2.03i)13-s + (0.597 + 2.83i)14-s + (−2.69 + 2.95i)16-s + (4.37 + 4.37i)17-s + (−1.13 − 4.08i)18-s − 4.93·19-s + ⋯ |
L(s) = 1 | + (0.545 − 0.837i)2-s + (−0.911 + 0.411i)3-s + (−0.404 − 0.914i)4-s + (−0.152 + 0.988i)6-s + (−0.546 + 0.546i)7-s + (−0.987 − 0.160i)8-s + (0.660 − 0.750i)9-s − 0.193·11-s + (0.744 + 0.667i)12-s + (−0.563 + 0.563i)13-s + (0.159 + 0.756i)14-s + (−0.673 + 0.739i)16-s + (1.06 + 1.06i)17-s + (−0.267 − 0.963i)18-s − 1.13·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.188 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.445073 + 0.367666i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.445073 + 0.367666i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.771 + 1.18i)T \) |
| 3 | \( 1 + (1.57 - 0.713i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (1.44 - 1.44i)T - 7iT^{2} \) |
| 11 | \( 1 + 0.641T + 11T^{2} \) |
| 13 | \( 1 + (2.03 - 2.03i)T - 13iT^{2} \) |
| 17 | \( 1 + (-4.37 - 4.37i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.93T + 19T^{2} \) |
| 23 | \( 1 + (3.73 - 3.73i)T - 23iT^{2} \) |
| 29 | \( 1 - 9.84iT - 29T^{2} \) |
| 31 | \( 1 - 5.23T + 31T^{2} \) |
| 37 | \( 1 + (3.44 + 3.44i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.20iT - 41T^{2} \) |
| 43 | \( 1 + (4.37 - 4.37i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.08 + 4.08i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.83 - 3.83i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.50iT - 59T^{2} \) |
| 61 | \( 1 + 9.64iT - 61T^{2} \) |
| 67 | \( 1 + (2.59 + 2.59i)T + 67iT^{2} \) |
| 71 | \( 1 - 16.7iT - 71T^{2} \) |
| 73 | \( 1 + (8.40 + 8.40i)T + 73iT^{2} \) |
| 79 | \( 1 - 5.31iT - 79T^{2} \) |
| 83 | \( 1 + (2.20 + 2.20i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.96T + 89T^{2} \) |
| 97 | \( 1 + (-1.11 + 1.11i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83478746230408094776951237469, −10.19799101682647889460088637294, −9.525533380659323299460205919317, −8.541023858048257016198524785545, −6.89791803943392404685316525026, −5.99311244191646133047035143579, −5.30589475873105529354759790793, −4.24115379586713043595402314889, −3.28288256450692956558901361760, −1.72057125151268574643665101513,
0.29405768950329859319788374102, 2.71776490086110342799025149008, 4.18269807328501849955502621033, 5.04448404961984274286647698798, 6.04381674756821773403312464817, 6.70135252324339408184859700385, 7.60949380560703573201328657646, 8.265917279082680062124293791324, 9.821250014426974563246550132630, 10.33753123292292676726051515354