Properties

Label 8-60e4-1.1-c5e4-0-0
Degree $8$
Conductor $12960000$
Sign $1$
Analytic cond. $8575.25$
Root an. cond. $3.10210$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 61·4-s − 486·9-s + 2.69e3·16-s + 6.25e3·25-s − 2.96e4·36-s − 6.72e4·49-s − 1.39e5·61-s + 1.02e5·64-s + 1.77e5·81-s + 3.81e5·100-s − 5.03e5·109-s − 6.44e5·121-s + 127-s + 131-s + 137-s + 139-s − 1.31e6·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.48e6·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 1.90·4-s − 2·9-s + 2.63·16-s + 2·25-s − 3.81·36-s − 4·49-s − 4.79·61-s + 3.11·64-s + 3·81-s + 3.81·100-s − 4.06·109-s − 4·121-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s − 5.26·144-s + 3.69e−6·149-s + 3.56e−6·151-s + 3.23e−6·157-s + 2.94e−6·163-s + 2.77e−6·167-s + 4·169-s + 2.54e−6·173-s + 2.33e−6·179-s + 2.26e−6·181-s + 1.98e−6·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(8575.25\)
Root analytic conductor: \(3.10210\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 12960000,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.722527368\)
\(L(\frac12)\) \(\approx\) \(1.722527368\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - 61 T^{2} + p^{10} T^{4} \)
3$C_2$ \( ( 1 + p^{5} T^{2} )^{2} \)
5$C_2$ \( ( 1 - p^{5} T^{2} )^{2} \)
good7$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
11$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
13$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
17$C_2^2$ \( ( 1 + 2419214 T^{2} + p^{10} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 2164 T + p^{5} T^{2} )^{2}( 1 + 2164 T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( ( 1 + 10950686 T^{2} + p^{10} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
31$C_2$ \( ( 1 - 8152 T + p^{5} T^{2} )^{2}( 1 + 8152 T + p^{5} T^{2} )^{2} \)
37$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
41$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
43$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 311808014 T^{2} + p^{10} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 836229514 T^{2} + p^{10} T^{4} )^{2} \)
59$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
61$C_2$ \( ( 1 + 34802 T + p^{5} T^{2} )^{4} \)
67$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
71$C_2$ \( ( 1 + p^{5} T^{2} )^{4} \)
73$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
79$C_2$ \( ( 1 - 70064 T + p^{5} T^{2} )^{2}( 1 + 70064 T + p^{5} T^{2} )^{2} \)
83$C_2^2$ \( ( 1 + 2642233286 T^{2} + p^{10} T^{4} )^{2} \)
89$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
97$C_2$ \( ( 1 - p^{5} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39711844001355369995742725265, −9.959543318701449538212728505803, −9.499625520159966222369892803579, −9.174704404545756585303668468812, −9.059110848667624021763671257759, −8.425147169944319396014685827529, −8.183638704468911770666832235231, −8.006212496260213293685912036165, −7.56601191716416551961177694114, −7.32911190645733895662670404555, −6.70599650658927333779178894389, −6.44202225634761342080298676913, −6.29756211969504577696191430782, −6.05030892001333180395095988349, −5.39390020442934926710204035211, −5.13291908889729115953599852162, −4.83569465323033961644590182682, −4.07811486877285194194074388872, −3.32551292687053011080103786044, −3.04464524414253636784218423785, −2.86431614034986513348992062963, −2.40896881552571179828165298562, −1.49171985602151090481865763173, −1.40547180846058450597192123906, −0.25821760885397899527095426079, 0.25821760885397899527095426079, 1.40547180846058450597192123906, 1.49171985602151090481865763173, 2.40896881552571179828165298562, 2.86431614034986513348992062963, 3.04464524414253636784218423785, 3.32551292687053011080103786044, 4.07811486877285194194074388872, 4.83569465323033961644590182682, 5.13291908889729115953599852162, 5.39390020442934926710204035211, 6.05030892001333180395095988349, 6.29756211969504577696191430782, 6.44202225634761342080298676913, 6.70599650658927333779178894389, 7.32911190645733895662670404555, 7.56601191716416551961177694114, 8.006212496260213293685912036165, 8.183638704468911770666832235231, 8.425147169944319396014685827529, 9.059110848667624021763671257759, 9.174704404545756585303668468812, 9.499625520159966222369892803579, 9.959543318701449538212728505803, 10.39711844001355369995742725265

Graph of the $Z$-function along the critical line