Properties

Label 8-60e4-1.1-c3e4-0-0
Degree $8$
Conductor $12960000$
Sign $1$
Analytic cond. $157.061$
Root an. cond. $1.88151$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·4-s − 44·9-s + 192·16-s − 250·25-s + 704·36-s + 1.04e3·49-s − 3.80e3·61-s − 2.04e3·64-s + 1.20e3·81-s + 4.00e3·100-s + 4.54e3·109-s − 5.32e3·121-s + 127-s + 131-s + 137-s + 139-s − 8.44e3·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8.78e3·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2·4-s − 1.62·9-s + 3·16-s − 2·25-s + 3.25·36-s + 3.05·49-s − 7.99·61-s − 4·64-s + 1.65·81-s + 4·100-s + 3.99·109-s − 4·121-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s − 4.88·144-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 4·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(157.061\)
Root analytic conductor: \(1.88151\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 12960000,\ (\ :3/2, 3/2, 3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1507729083\)
\(L(\frac12)\) \(\approx\) \(0.1507729083\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
3$C_2^2$ \( 1 + 44 T^{2} + p^{6} T^{4} \)
5$C_2$ \( ( 1 + p^{3} T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 - 524 T^{2} + p^{6} T^{4} )^{2} \)
11$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
13$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
17$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
19$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 15356 T^{2} + p^{6} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 306 T + p^{3} T^{2} )^{2}( 1 + 306 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
37$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
41$C_2$ \( ( 1 - 252 T + p^{3} T^{2} )^{2}( 1 + 252 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( ( 1 + 17404 T^{2} + p^{6} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 26444 T^{2} + p^{6} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
59$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
61$C_2$ \( ( 1 + 952 T + p^{3} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 1276 T^{2} + p^{6} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p^{3} T^{2} )^{4} \)
73$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
79$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 1131716 T^{2} + p^{6} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 1386 T + p^{3} T^{2} )^{2}( 1 + 1386 T + p^{3} T^{2} )^{2} \)
97$C_2$ \( ( 1 - p^{3} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47409595159751539995875544676, −10.45065916963449620267226889324, −10.27013998681000470387754088628, −9.584201349598170256215612189602, −9.235938754708454756838525140473, −9.215609094872675604269319369777, −8.958939443464264464719319729533, −8.662225897606281002936080979194, −8.188437353256050882289912562211, −7.86107133459467140753643875731, −7.60362716723354735241882698995, −7.51446563720878588400609749975, −6.67508787827811137153131290096, −6.02965178541942142799017726881, −5.85500024695023818099067164303, −5.79466902860976828786439429536, −5.25832508906662276235860247802, −4.57245708444771568703551669400, −4.55132469486312377704126186131, −4.00492524771816173921710435288, −3.27784160516632898521443723557, −3.22782123357478675252932884824, −2.31228669392935700702097668963, −1.30835252347262208714899734917, −0.17666639000619821441175926180, 0.17666639000619821441175926180, 1.30835252347262208714899734917, 2.31228669392935700702097668963, 3.22782123357478675252932884824, 3.27784160516632898521443723557, 4.00492524771816173921710435288, 4.55132469486312377704126186131, 4.57245708444771568703551669400, 5.25832508906662276235860247802, 5.79466902860976828786439429536, 5.85500024695023818099067164303, 6.02965178541942142799017726881, 6.67508787827811137153131290096, 7.51446563720878588400609749975, 7.60362716723354735241882698995, 7.86107133459467140753643875731, 8.188437353256050882289912562211, 8.662225897606281002936080979194, 8.958939443464264464719319729533, 9.215609094872675604269319369777, 9.235938754708454756838525140473, 9.584201349598170256215612189602, 10.27013998681000470387754088628, 10.45065916963449620267226889324, 10.47409595159751539995875544676

Graph of the $Z$-function along the critical line