Properties

Label 2-5950-1.1-c1-0-129
Degree $2$
Conductor $5950$
Sign $-1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.0938·3-s + 4-s − 0.0938·6-s − 7-s + 8-s − 2.99·9-s + 2.95·11-s − 0.0938·12-s − 3.70·13-s − 14-s + 16-s − 17-s − 2.99·18-s + 3.33·19-s + 0.0938·21-s + 2.95·22-s − 4.02·23-s − 0.0938·24-s − 3.70·26-s + 0.562·27-s − 28-s − 1.83·29-s + 8.40·31-s + 32-s − 0.277·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.0541·3-s + 0.5·4-s − 0.0382·6-s − 0.377·7-s + 0.353·8-s − 0.997·9-s + 0.892·11-s − 0.0270·12-s − 1.02·13-s − 0.267·14-s + 0.250·16-s − 0.242·17-s − 0.705·18-s + 0.764·19-s + 0.0204·21-s + 0.630·22-s − 0.840·23-s − 0.0191·24-s − 0.727·26-s + 0.108·27-s − 0.188·28-s − 0.340·29-s + 1.50·31-s + 0.176·32-s − 0.0483·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + 0.0938T + 3T^{2} \)
11 \( 1 - 2.95T + 11T^{2} \)
13 \( 1 + 3.70T + 13T^{2} \)
19 \( 1 - 3.33T + 19T^{2} \)
23 \( 1 + 4.02T + 23T^{2} \)
29 \( 1 + 1.83T + 29T^{2} \)
31 \( 1 - 8.40T + 31T^{2} \)
37 \( 1 - 9.60T + 37T^{2} \)
41 \( 1 + 6.25T + 41T^{2} \)
43 \( 1 + 8.97T + 43T^{2} \)
47 \( 1 + 6.60T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 - 4.82T + 59T^{2} \)
61 \( 1 + 14.3T + 61T^{2} \)
67 \( 1 - 7.41T + 67T^{2} \)
71 \( 1 + 6.15T + 71T^{2} \)
73 \( 1 - 5.53T + 73T^{2} \)
79 \( 1 + 3.94T + 79T^{2} \)
83 \( 1 + 0.858T + 83T^{2} \)
89 \( 1 + 2.26T + 89T^{2} \)
97 \( 1 - 7.50T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80355637577230442800568642035, −6.62183371069545249727361514487, −6.45858968072603371861724503542, −5.52350641763212375286128426178, −4.86234875051398613243332654458, −4.09333174962005913132649625943, −3.17234045633390977946909414879, −2.62300646806034423758623031127, −1.48368473997653219576751488898, 0, 1.48368473997653219576751488898, 2.62300646806034423758623031127, 3.17234045633390977946909414879, 4.09333174962005913132649625943, 4.86234875051398613243332654458, 5.52350641763212375286128426178, 6.45858968072603371861724503542, 6.62183371069545249727361514487, 7.80355637577230442800568642035

Graph of the $Z$-function along the critical line