Properties

Label 2-5950-1.1-c1-0-108
Degree $2$
Conductor $5950$
Sign $1$
Analytic cond. $47.5109$
Root an. cond. $6.89282$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3.07·3-s + 4-s + 3.07·6-s + 7-s + 8-s + 6.48·9-s − 3.48·11-s + 3.07·12-s + 14-s + 16-s + 17-s + 6.48·18-s + 7.48·19-s + 3.07·21-s − 3.48·22-s + 3.07·23-s + 3.07·24-s + 10.7·27-s + 28-s − 3.07·29-s − 7.63·31-s + 32-s − 10.7·33-s + 34-s + 6.48·36-s + 2.15·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.77·3-s + 0.5·4-s + 1.25·6-s + 0.377·7-s + 0.353·8-s + 2.16·9-s − 1.04·11-s + 0.888·12-s + 0.267·14-s + 0.250·16-s + 0.242·17-s + 1.52·18-s + 1.71·19-s + 0.671·21-s − 0.742·22-s + 0.642·23-s + 0.628·24-s + 2.06·27-s + 0.188·28-s − 0.571·29-s − 1.37·31-s + 0.176·32-s − 1.86·33-s + 0.171·34-s + 1.08·36-s + 0.354·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5950\)    =    \(2 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(47.5109\)
Root analytic conductor: \(6.89282\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.807339198\)
\(L(\frac12)\) \(\approx\) \(6.807339198\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 3.07T + 3T^{2} \)
11 \( 1 + 3.48T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
19 \( 1 - 7.48T + 19T^{2} \)
23 \( 1 - 3.07T + 23T^{2} \)
29 \( 1 + 3.07T + 29T^{2} \)
31 \( 1 + 7.63T + 31T^{2} \)
37 \( 1 - 2.15T + 37T^{2} \)
41 \( 1 - 0.519T + 41T^{2} \)
43 \( 1 - 7.07T + 43T^{2} \)
47 \( 1 - 3.07T + 47T^{2} \)
53 \( 1 + 5.07T + 53T^{2} \)
59 \( 1 + 1.07T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 + 13.7T + 67T^{2} \)
71 \( 1 - 13.1T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 0.803T + 79T^{2} \)
83 \( 1 + 6.31T + 83T^{2} \)
89 \( 1 + 2.80T + 89T^{2} \)
97 \( 1 + 14.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.912891768432854587614953887125, −7.48496356612550445630456650154, −7.04503218123805675438318552363, −5.69531720391768743398741391575, −5.15400616483355394749443022698, −4.24839447915048108012861667189, −3.48583819780453146350973386585, −2.89861621513994923530394471190, −2.22156737596747933076881967923, −1.25550269383113917042103029010, 1.25550269383113917042103029010, 2.22156737596747933076881967923, 2.89861621513994923530394471190, 3.48583819780453146350973386585, 4.24839447915048108012861667189, 5.15400616483355394749443022698, 5.69531720391768743398741391575, 7.04503218123805675438318552363, 7.48496356612550445630456650154, 7.912891768432854587614953887125

Graph of the $Z$-function along the critical line