| L(s) = 1 | + (−1.27 + 2.21i)2-s + (2.06 − 1.19i)3-s + (−2.25 − 3.91i)4-s + (0.866 + 0.5i)5-s + 6.09i·6-s + (2.39 − 1.12i)7-s + 6.41·8-s + (1.35 − 2.34i)9-s + (−2.21 + 1.27i)10-s + (−3.62 + 2.09i)11-s + (−9.33 − 5.39i)12-s + 4.01·13-s + (−0.580 + 6.72i)14-s + 2.38·15-s + (−3.67 + 6.37i)16-s + (0.441 − 4.09i)17-s + ⋯ |
| L(s) = 1 | + (−0.902 + 1.56i)2-s + (1.19 − 0.689i)3-s + (−1.12 − 1.95i)4-s + (0.387 + 0.223i)5-s + 2.48i·6-s + (0.905 − 0.423i)7-s + 2.26·8-s + (0.450 − 0.780i)9-s + (−0.699 + 0.403i)10-s + (−1.09 + 0.630i)11-s + (−2.69 − 1.55i)12-s + 1.11·13-s + (−0.155 + 1.79i)14-s + 0.616·15-s + (−0.919 + 1.59i)16-s + (0.107 − 0.994i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 595 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.34598 + 0.664523i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.34598 + 0.664523i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.39 + 1.12i)T \) |
| 17 | \( 1 + (-0.441 + 4.09i)T \) |
| good | 2 | \( 1 + (1.27 - 2.21i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-2.06 + 1.19i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (3.62 - 2.09i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.01T + 13T^{2} \) |
| 19 | \( 1 + (-1.00 + 1.74i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.480 - 0.277i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 1.78iT - 29T^{2} \) |
| 31 | \( 1 + (-5.36 + 3.09i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.18 + 0.685i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.93iT - 41T^{2} \) |
| 43 | \( 1 - 11.3T + 43T^{2} \) |
| 47 | \( 1 + (4.97 - 8.61i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.87 + 10.1i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.72 - 8.18i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.03 + 0.595i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.38 - 4.13i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 7.13iT - 71T^{2} \) |
| 73 | \( 1 + (14.1 - 8.18i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.84 + 4.52i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 11.8T + 83T^{2} \) |
| 89 | \( 1 + (-3.57 + 6.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 3.47iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.36214036688596324910958367852, −9.511420367063456969745017721852, −8.714229410422598823125365806747, −7.927364108560550343755735699768, −7.56158926802561035336400702009, −6.74653890083687761016889358308, −5.62145220084230122238588388531, −4.58967304107065354224958172408, −2.66199755973350796804744195928, −1.24481979296059573585081232615,
1.45091792275739861961612289491, 2.54757675186091818277930797195, 3.39934071738102319141571567232, 4.36967252074247898104482875211, 5.71497315309784172936891048925, 7.84721049792467445919130256641, 8.524843519027117452110789937589, 8.718717653843917553977183525975, 9.745697526861986303447705217565, 10.54994843681022378431855883131