Properties

Label 2-77e2-1.1-c1-0-170
Degree $2$
Conductor $5929$
Sign $-1$
Analytic cond. $47.3433$
Root an. cond. $6.88064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.53·2-s − 2.87·3-s + 0.347·4-s − 2.34·5-s − 4.41·6-s − 2.53·8-s + 5.29·9-s − 3.59·10-s − 0.999·12-s − 0.184·13-s + 6.75·15-s − 4.57·16-s − 3.92·17-s + 8.10·18-s + 0.773·19-s − 0.815·20-s + 8.35·23-s + 7.29·24-s + 0.509·25-s − 0.283·26-s − 6.59·27-s + 8.17·29-s + 10.3·30-s − 2.65·31-s − 1.94·32-s − 6.00·34-s + 1.83·36-s + ⋯
L(s)  = 1  + 1.08·2-s − 1.66·3-s + 0.173·4-s − 1.04·5-s − 1.80·6-s − 0.895·8-s + 1.76·9-s − 1.13·10-s − 0.288·12-s − 0.0512·13-s + 1.74·15-s − 1.14·16-s − 0.951·17-s + 1.91·18-s + 0.177·19-s − 0.182·20-s + 1.74·23-s + 1.48·24-s + 0.101·25-s − 0.0555·26-s − 1.26·27-s + 1.51·29-s + 1.89·30-s − 0.476·31-s − 0.343·32-s − 1.03·34-s + 0.306·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5929\)    =    \(7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(47.3433\)
Root analytic conductor: \(6.88064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5929,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 - 1.53T + 2T^{2} \)
3 \( 1 + 2.87T + 3T^{2} \)
5 \( 1 + 2.34T + 5T^{2} \)
13 \( 1 + 0.184T + 13T^{2} \)
17 \( 1 + 3.92T + 17T^{2} \)
19 \( 1 - 0.773T + 19T^{2} \)
23 \( 1 - 8.35T + 23T^{2} \)
29 \( 1 - 8.17T + 29T^{2} \)
31 \( 1 + 2.65T + 31T^{2} \)
37 \( 1 + 6.82T + 37T^{2} \)
41 \( 1 - 0.426T + 41T^{2} \)
43 \( 1 + 1.18T + 43T^{2} \)
47 \( 1 - 7.68T + 47T^{2} \)
53 \( 1 - 6.55T + 53T^{2} \)
59 \( 1 + 0.204T + 59T^{2} \)
61 \( 1 - 14.5T + 61T^{2} \)
67 \( 1 - 3.75T + 67T^{2} \)
71 \( 1 + 9.96T + 71T^{2} \)
73 \( 1 - 0.120T + 73T^{2} \)
79 \( 1 + 0.327T + 79T^{2} \)
83 \( 1 - 3.35T + 83T^{2} \)
89 \( 1 - 4.65T + 89T^{2} \)
97 \( 1 + 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.24970918825858773898352241655, −6.85795993428164263643926945729, −6.18148798512721077916137345438, −5.31392015531216517195243986526, −4.95096334864514581471005721873, −4.26231114425030977646293325885, −3.65379481563052012702485099070, −2.60589970755245546968989790958, −0.954680178519710563075561897996, 0, 0.954680178519710563075561897996, 2.60589970755245546968989790958, 3.65379481563052012702485099070, 4.26231114425030977646293325885, 4.95096334864514581471005721873, 5.31392015531216517195243986526, 6.18148798512721077916137345438, 6.85795993428164263643926945729, 7.24970918825858773898352241655

Graph of the $Z$-function along the critical line