| L(s) = 1 | + 1.53·2-s − 2.87·3-s + 0.347·4-s − 2.34·5-s − 4.41·6-s − 2.53·8-s + 5.29·9-s − 3.59·10-s − 0.999·12-s − 0.184·13-s + 6.75·15-s − 4.57·16-s − 3.92·17-s + 8.10·18-s + 0.773·19-s − 0.815·20-s + 8.35·23-s + 7.29·24-s + 0.509·25-s − 0.283·26-s − 6.59·27-s + 8.17·29-s + 10.3·30-s − 2.65·31-s − 1.94·32-s − 6.00·34-s + 1.83·36-s + ⋯ |
| L(s) = 1 | + 1.08·2-s − 1.66·3-s + 0.173·4-s − 1.04·5-s − 1.80·6-s − 0.895·8-s + 1.76·9-s − 1.13·10-s − 0.288·12-s − 0.0512·13-s + 1.74·15-s − 1.14·16-s − 0.951·17-s + 1.91·18-s + 0.177·19-s − 0.182·20-s + 1.74·23-s + 1.48·24-s + 0.101·25-s − 0.0555·26-s − 1.26·27-s + 1.51·29-s + 1.89·30-s − 0.476·31-s − 0.343·32-s − 1.03·34-s + 0.306·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 - 1.53T + 2T^{2} \) |
| 3 | \( 1 + 2.87T + 3T^{2} \) |
| 5 | \( 1 + 2.34T + 5T^{2} \) |
| 13 | \( 1 + 0.184T + 13T^{2} \) |
| 17 | \( 1 + 3.92T + 17T^{2} \) |
| 19 | \( 1 - 0.773T + 19T^{2} \) |
| 23 | \( 1 - 8.35T + 23T^{2} \) |
| 29 | \( 1 - 8.17T + 29T^{2} \) |
| 31 | \( 1 + 2.65T + 31T^{2} \) |
| 37 | \( 1 + 6.82T + 37T^{2} \) |
| 41 | \( 1 - 0.426T + 41T^{2} \) |
| 43 | \( 1 + 1.18T + 43T^{2} \) |
| 47 | \( 1 - 7.68T + 47T^{2} \) |
| 53 | \( 1 - 6.55T + 53T^{2} \) |
| 59 | \( 1 + 0.204T + 59T^{2} \) |
| 61 | \( 1 - 14.5T + 61T^{2} \) |
| 67 | \( 1 - 3.75T + 67T^{2} \) |
| 71 | \( 1 + 9.96T + 71T^{2} \) |
| 73 | \( 1 - 0.120T + 73T^{2} \) |
| 79 | \( 1 + 0.327T + 79T^{2} \) |
| 83 | \( 1 - 3.35T + 83T^{2} \) |
| 89 | \( 1 - 4.65T + 89T^{2} \) |
| 97 | \( 1 + 13.1T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.24970918825858773898352241655, −6.85795993428164263643926945729, −6.18148798512721077916137345438, −5.31392015531216517195243986526, −4.95096334864514581471005721873, −4.26231114425030977646293325885, −3.65379481563052012702485099070, −2.60589970755245546968989790958, −0.954680178519710563075561897996, 0,
0.954680178519710563075561897996, 2.60589970755245546968989790958, 3.65379481563052012702485099070, 4.26231114425030977646293325885, 4.95096334864514581471005721873, 5.31392015531216517195243986526, 6.18148798512721077916137345438, 6.85795993428164263643926945729, 7.24970918825858773898352241655