Properties

Label 2-77e2-1.1-c1-0-239
Degree $2$
Conductor $5929$
Sign $-1$
Analytic cond. $47.3433$
Root an. cond. $6.88064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·2-s + 0.532·3-s − 1.87·4-s − 0.120·5-s + 0.184·6-s − 1.34·8-s − 2.71·9-s − 0.0418·10-s − 12-s − 1.22·13-s − 0.0641·15-s + 3.29·16-s + 6.17·17-s − 0.943·18-s + 6.41·19-s + 0.226·20-s − 2.02·23-s − 0.716·24-s − 4.98·25-s − 0.426·26-s − 3.04·27-s − 3.24·29-s − 0.0222·30-s − 4.87·31-s + 3.83·32-s + 2.14·34-s + 5.10·36-s + ⋯
L(s)  = 1  + 0.245·2-s + 0.307·3-s − 0.939·4-s − 0.0539·5-s + 0.0754·6-s − 0.476·8-s − 0.905·9-s − 0.0132·10-s − 0.288·12-s − 0.340·13-s − 0.0165·15-s + 0.822·16-s + 1.49·17-s − 0.222·18-s + 1.47·19-s + 0.0506·20-s − 0.421·23-s − 0.146·24-s − 0.997·25-s − 0.0835·26-s − 0.585·27-s − 0.603·29-s − 0.00406·30-s − 0.876·31-s + 0.678·32-s + 0.367·34-s + 0.851·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5929\)    =    \(7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(47.3433\)
Root analytic conductor: \(6.88064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5929,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 - 0.347T + 2T^{2} \)
3 \( 1 - 0.532T + 3T^{2} \)
5 \( 1 + 0.120T + 5T^{2} \)
13 \( 1 + 1.22T + 13T^{2} \)
17 \( 1 - 6.17T + 17T^{2} \)
19 \( 1 - 6.41T + 19T^{2} \)
23 \( 1 + 2.02T + 23T^{2} \)
29 \( 1 + 3.24T + 29T^{2} \)
31 \( 1 + 4.87T + 31T^{2} \)
37 \( 1 - 2.36T + 37T^{2} \)
41 \( 1 - 8.29T + 41T^{2} \)
43 \( 1 + 2.22T + 43T^{2} \)
47 \( 1 + 9.23T + 47T^{2} \)
53 \( 1 - 9.68T + 53T^{2} \)
59 \( 1 - 9.74T + 59T^{2} \)
61 \( 1 + 1.43T + 61T^{2} \)
67 \( 1 + 3.06T + 67T^{2} \)
71 \( 1 + 8.49T + 71T^{2} \)
73 \( 1 - 3.53T + 73T^{2} \)
79 \( 1 + 9.09T + 79T^{2} \)
83 \( 1 + 7.02T + 83T^{2} \)
89 \( 1 - 6.87T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77175147151751479604861277723, −7.31474981877294892004422721988, −5.88384795196441021666240032257, −5.64362179523665567322923246262, −4.94440939130110529181238928176, −3.85823547133419534574150683309, −3.41741616189522395469138397749, −2.55585271053964514365077803175, −1.22251092239853051270189839154, 0, 1.22251092239853051270189839154, 2.55585271053964514365077803175, 3.41741616189522395469138397749, 3.85823547133419534574150683309, 4.94440939130110529181238928176, 5.64362179523665567322923246262, 5.88384795196441021666240032257, 7.31474981877294892004422721988, 7.77175147151751479604861277723

Graph of the $Z$-function along the critical line