L(s) = 1 | + (−1.44 + 1.38i)2-s + 1.73i·3-s + (0.173 − 3.99i)4-s + 1.50·5-s + (−2.39 − 2.50i)6-s + (5.27 + 6.01i)8-s − 2.99·9-s + (−2.17 + 2.07i)10-s − 9.21i·11-s + (6.92 + 0.299i)12-s + 5.97·13-s + 2.60i·15-s + (−15.9 − 1.38i)16-s − 3.95·17-s + (4.33 − 4.14i)18-s − 3.59i·19-s + ⋯ |
L(s) = 1 | + (−0.722 + 0.691i)2-s + 0.577i·3-s + (0.0432 − 0.999i)4-s + 0.300·5-s + (−0.399 − 0.416i)6-s + (0.659 + 0.751i)8-s − 0.333·9-s + (−0.217 + 0.207i)10-s − 0.837i·11-s + (0.576 + 0.0249i)12-s + 0.459·13-s + 0.173i·15-s + (−0.996 − 0.0864i)16-s − 0.232·17-s + (0.240 − 0.230i)18-s − 0.189i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0432i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0432i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.114957044\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.114957044\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.44 - 1.38i)T \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 1.50T + 25T^{2} \) |
| 11 | \( 1 + 9.21iT - 121T^{2} \) |
| 13 | \( 1 - 5.97T + 169T^{2} \) |
| 17 | \( 1 + 3.95T + 289T^{2} \) |
| 19 | \( 1 + 3.59iT - 361T^{2} \) |
| 23 | \( 1 + 21.6iT - 529T^{2} \) |
| 29 | \( 1 - 47.5T + 841T^{2} \) |
| 31 | \( 1 + 38.5iT - 961T^{2} \) |
| 37 | \( 1 + 52.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 64.9T + 1.68e3T^{2} \) |
| 43 | \( 1 + 16.8iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 68.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 18.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + 49.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 98.5T + 3.72e3T^{2} \) |
| 67 | \( 1 - 129. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 61.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 95.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 13.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 91.0iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 90.7T + 7.92e3T^{2} \) |
| 97 | \( 1 - 7.05T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33939187550612714695641300273, −9.539771023756337095906733114410, −8.654498494453131728094143337420, −8.116432407259732098770104294910, −6.80141196334348458843192723914, −6.02386171507302526003504017933, −5.16237559027847341399744985624, −3.95997471181985903553813027245, −2.35863273165238314567743930637, −0.60670901459744255485356194599,
1.20715494885782849460994501300, 2.23839063692645708283834268552, 3.46428573840096318664287609749, 4.75367103279559468510502315787, 6.18945763555960871426343214117, 7.13271020314105876235982824046, 7.932391300189964548069936771214, 8.827549427141836921320243567167, 9.658457368408710144019385996009, 10.45138723379004704456028115958