L(s) = 1 | + (−1.96 + 0.371i)2-s + 1.73i·3-s + (3.72 − 1.45i)4-s + 4.44·5-s + (−0.642 − 3.40i)6-s + (−6.77 + 4.24i)8-s − 2.99·9-s + (−8.73 + 1.65i)10-s − 14.7i·11-s + (2.52 + 6.45i)12-s − 0.580·13-s + 7.70i·15-s + (11.7 − 10.8i)16-s − 1.84·17-s + (5.89 − 1.11i)18-s − 27.1i·19-s + ⋯ |
L(s) = 1 | + (−0.982 + 0.185i)2-s + 0.577i·3-s + (0.931 − 0.364i)4-s + 0.889·5-s + (−0.107 − 0.567i)6-s + (−0.847 + 0.531i)8-s − 0.333·9-s + (−0.873 + 0.165i)10-s − 1.34i·11-s + (0.210 + 0.537i)12-s − 0.0446·13-s + 0.513i·15-s + (0.733 − 0.679i)16-s − 0.108·17-s + (0.327 − 0.0618i)18-s − 1.42i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.364 + 0.931i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.364 + 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9324455135\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9324455135\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.96 - 0.371i)T \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 4.44T + 25T^{2} \) |
| 11 | \( 1 + 14.7iT - 121T^{2} \) |
| 13 | \( 1 + 0.580T + 169T^{2} \) |
| 17 | \( 1 + 1.84T + 289T^{2} \) |
| 19 | \( 1 + 27.1iT - 361T^{2} \) |
| 23 | \( 1 + 32.0iT - 529T^{2} \) |
| 29 | \( 1 + 52.0T + 841T^{2} \) |
| 31 | \( 1 - 5.90iT - 961T^{2} \) |
| 37 | \( 1 - 29.9T + 1.36e3T^{2} \) |
| 41 | \( 1 + 34.8T + 1.68e3T^{2} \) |
| 43 | \( 1 - 63.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 58.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 24.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + 64.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 44.3T + 3.72e3T^{2} \) |
| 67 | \( 1 + 42.3iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 33.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 130.T + 5.32e3T^{2} \) |
| 79 | \( 1 - 48.7iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 137. iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 116.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 133.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18998039226094484784747079759, −9.354406405386484982663186816559, −8.820072694618700098849944666537, −7.900064124410035701754549103804, −6.61728901422641978118572189860, −5.95112820899504005252249586577, −4.96629997015053466255875185269, −3.26782284982406678206726725904, −2.14819520245156124293840195965, −0.46279979615082776705454071851,
1.55858332867109110588795407921, 2.15956074576036546771044498456, 3.70390378538773047700636268668, 5.48586465876518551714962618297, 6.28202817261308231505250423469, 7.38178465604657181431966729106, 7.82928361842066316182355598400, 9.165023465516642650423087531761, 9.676976040754240010304872852890, 10.41245095788848293461337946997