Properties

Label 4-588e2-1.1-c2e2-0-2
Degree $4$
Conductor $345744$
Sign $1$
Analytic cond. $256.699$
Root an. cond. $4.00272$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 7·9-s − 28·13-s − 16·19-s + 5·25-s + 8·27-s + 62·31-s − 56·37-s + 112·39-s − 104·43-s + 64·57-s − 28·61-s − 8·67-s − 196·73-s − 20·75-s + 202·79-s − 95·81-s − 248·93-s + 26·97-s − 316·103-s + 16·109-s + 224·111-s − 196·117-s + 197·121-s + 127-s + 416·129-s + 131-s + ⋯
L(s)  = 1  − 4/3·3-s + 7/9·9-s − 2.15·13-s − 0.842·19-s + 1/5·25-s + 8/27·27-s + 2·31-s − 1.51·37-s + 2.87·39-s − 2.41·43-s + 1.12·57-s − 0.459·61-s − 0.119·67-s − 2.68·73-s − 0.266·75-s + 2.55·79-s − 1.17·81-s − 8/3·93-s + 0.268·97-s − 3.06·103-s + 0.146·109-s + 2.01·111-s − 1.67·117-s + 1.62·121-s + 0.00787·127-s + 3.22·129-s + 0.00763·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 345744 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(345744\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(256.699\)
Root analytic conductor: \(4.00272\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 345744,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2074650060\)
\(L(\frac12)\) \(\approx\) \(0.2074650060\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + 4 T + p^{2} T^{2} \)
7 \( 1 \)
good5$C_2^2$ \( 1 - p T^{2} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 197 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 142 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 - 44 T + p^{2} T^{2} )( 1 + 44 T + p^{2} T^{2} ) \)
29$C_2^2$ \( 1 + 523 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 28 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 1138 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + 52 T + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 2798 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 5573 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6557 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 8462 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 98 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 101 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 6173 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 11342 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82814490971174592281727807401, −10.21224849833442047387093080856, −9.906590714202482069088939543627, −9.754279729321019567060758048347, −8.934998271972651614091197447185, −8.426943647766531072927289793921, −8.166884278255222912740524296203, −7.24296092559417277538933552567, −7.21820112608773065754999210266, −6.51812577972347896147062893766, −6.29118861602379451829732844858, −5.63055846787275580477636417100, −4.98883866185677708130807945783, −4.84669662174245123723607980174, −4.43098373758325541655009719846, −3.51010885759090636228886126646, −2.80778449839879205435168369357, −2.20164880660860203509727839033, −1.31374718233180899021946460016, −0.19406031293199586909545254811, 0.19406031293199586909545254811, 1.31374718233180899021946460016, 2.20164880660860203509727839033, 2.80778449839879205435168369357, 3.51010885759090636228886126646, 4.43098373758325541655009719846, 4.84669662174245123723607980174, 4.98883866185677708130807945783, 5.63055846787275580477636417100, 6.29118861602379451829732844858, 6.51812577972347896147062893766, 7.21820112608773065754999210266, 7.24296092559417277538933552567, 8.166884278255222912740524296203, 8.426943647766531072927289793921, 8.934998271972651614091197447185, 9.754279729321019567060758048347, 9.906590714202482069088939543627, 10.21224849833442047387093080856, 10.82814490971174592281727807401

Graph of the $Z$-function along the critical line