L(s) = 1 | + (−0.381 + 1.36i)2-s + (0.5 − 0.866i)3-s + (−1.70 − 1.03i)4-s + (−0.977 + 0.564i)5-s + (0.988 + 1.01i)6-s + (2.06 − 1.93i)8-s + (−0.499 − 0.866i)9-s + (−0.396 − 1.54i)10-s + (−1.16 − 0.675i)11-s + (−1.75 + 0.961i)12-s + 5.58i·13-s + 1.12i·15-s + (1.84 + 3.54i)16-s + (3.44 + 1.98i)17-s + (1.36 − 0.350i)18-s + (3.07 + 5.32i)19-s + ⋯ |
L(s) = 1 | + (−0.269 + 0.963i)2-s + (0.288 − 0.499i)3-s + (−0.854 − 0.519i)4-s + (−0.437 + 0.252i)5-s + (0.403 + 0.412i)6-s + (0.730 − 0.683i)8-s + (−0.166 − 0.288i)9-s + (−0.125 − 0.489i)10-s + (−0.352 − 0.203i)11-s + (−0.506 + 0.277i)12-s + 1.54i·13-s + 0.291i·15-s + (0.461 + 0.887i)16-s + (0.834 + 0.481i)17-s + (0.322 − 0.0827i)18-s + (0.704 + 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0736 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0736 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.758169 + 0.816189i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.758169 + 0.816189i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.381 - 1.36i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.977 - 0.564i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.16 + 0.675i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.58iT - 13T^{2} \) |
| 17 | \( 1 + (-3.44 - 1.98i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.07 - 5.32i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.72 + 3.30i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.55T + 29T^{2} \) |
| 31 | \( 1 + (1.46 - 2.53i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.16 + 5.47i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.149iT - 41T^{2} \) |
| 43 | \( 1 - 10.6iT - 43T^{2} \) |
| 47 | \( 1 + (1.79 + 3.11i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.366 - 0.635i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.20 - 12.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.89 + 4.55i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.202 - 0.117i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.74iT - 71T^{2} \) |
| 73 | \( 1 + (1.52 + 0.882i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.28 - 4.20i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.12T + 83T^{2} \) |
| 89 | \( 1 + (-6.86 + 3.96i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77900503382363742375443712747, −9.820870263769081876426238557602, −8.924749275615030941045018950463, −8.143864438543925054175456517941, −7.36100038272766351808573848711, −6.63580754418826573646833856715, −5.67325624263536833952402087361, −4.47681050567990254448306897944, −3.31071337964351690880262170008, −1.40753583998653360180433696719,
0.76436286796510275325767152529, 2.74493685874087774220692600072, 3.40681173830893179018670058082, 4.75991225558548797626199852673, 5.35415957716752560211290735129, 7.28609994321344440749806795853, 8.079835171374811283005794180187, 8.819682285637669777174764454938, 9.821482506405376506283919164451, 10.33949272772952048159291616563