L(s) = 1 | + (−0.00239 − 1.41i)2-s + (−0.5 + 0.866i)3-s + (−1.99 + 0.00677i)4-s + (3.15 − 1.82i)5-s + (1.22 + 0.705i)6-s + (0.0143 + 2.82i)8-s + (−0.499 − 0.866i)9-s + (−2.58 − 4.46i)10-s + (5.25 + 3.03i)11-s + (0.994 − 1.73i)12-s − 0.483i·13-s + 3.64i·15-s + (3.99 − 0.0271i)16-s + (−2.21 − 1.27i)17-s + (−1.22 + 0.709i)18-s + (0.609 + 1.05i)19-s + ⋯ |
L(s) = 1 | + (−0.00169 − 0.999i)2-s + (−0.288 + 0.499i)3-s + (−0.999 + 0.00338i)4-s + (1.41 − 0.815i)5-s + (0.500 + 0.287i)6-s + (0.00508 + 0.999i)8-s + (−0.166 − 0.288i)9-s + (−0.818 − 1.41i)10-s + (1.58 + 0.915i)11-s + (0.286 − 0.500i)12-s − 0.134i·13-s + 0.941i·15-s + (0.999 − 0.00677i)16-s + (−0.536 − 0.309i)17-s + (−0.288 + 0.167i)18-s + (0.139 + 0.242i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34617 - 0.899764i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34617 - 0.899764i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.00239 + 1.41i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-3.15 + 1.82i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.25 - 3.03i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.483iT - 13T^{2} \) |
| 17 | \( 1 + (2.21 + 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.609 - 1.05i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.00 - 1.73i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.21T + 29T^{2} \) |
| 31 | \( 1 + (-3.15 + 5.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.595 + 1.03i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.59iT - 41T^{2} \) |
| 43 | \( 1 - 3.51iT - 43T^{2} \) |
| 47 | \( 1 + (5.83 + 10.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.31 - 2.27i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.580 - 1.00i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.180 - 0.104i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.53 - 0.888i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.13iT - 71T^{2} \) |
| 73 | \( 1 + (-5.23 - 3.02i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.75 - 1.58i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 7.49T + 83T^{2} \) |
| 89 | \( 1 + (10.6 - 6.14i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 11.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24758458129088799313171902629, −9.758395280040978094208883714321, −9.208923482136806184739960574204, −8.404373064890181979648004775580, −6.65483474253239458054302817754, −5.67353162371071816352655173295, −4.75257884255324862120208329617, −3.96881571118704783888946907784, −2.31480514341231731411221734495, −1.23430459488667104975079958474,
1.39371064455537622487571646847, 3.08600168319826831350357650559, 4.57517245927053292575456610635, 5.83602794757191129896211487143, 6.52211069971746047935375761246, 6.70950261839050080746623306966, 8.195919284599835782058624519379, 9.010602809461528280006293261986, 9.830490006982062598250497616843, 10.68983720899062545103042291338