L(s) = 1 | + (−0.306 − 1.38i)2-s + (−0.5 + 0.866i)3-s + (−1.81 + 0.847i)4-s + (0.110 − 0.0639i)5-s + (1.34 + 0.424i)6-s + (1.72 + 2.24i)8-s + (−0.499 − 0.866i)9-s + (−0.122 − 0.133i)10-s + (−3.45 − 1.99i)11-s + (0.171 − 1.99i)12-s + 0.891i·13-s + 0.127i·15-s + (2.56 − 3.07i)16-s + (5.04 + 2.91i)17-s + (−1.04 + 0.956i)18-s + (3.15 + 5.46i)19-s + ⋯ |
L(s) = 1 | + (−0.217 − 0.976i)2-s + (−0.288 + 0.499i)3-s + (−0.905 + 0.423i)4-s + (0.0495 − 0.0286i)5-s + (0.550 + 0.173i)6-s + (0.610 + 0.792i)8-s + (−0.166 − 0.288i)9-s + (−0.0386 − 0.0421i)10-s + (−1.04 − 0.602i)11-s + (0.0496 − 0.575i)12-s + 0.247i·13-s + 0.0330i·15-s + (0.640 − 0.767i)16-s + (1.22 + 0.706i)17-s + (−0.245 + 0.225i)18-s + (0.724 + 1.25i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.732849 + 0.306695i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.732849 + 0.306695i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.306 + 1.38i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.110 + 0.0639i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (3.45 + 1.99i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.891iT - 13T^{2} \) |
| 17 | \( 1 + (-5.04 - 2.91i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.15 - 5.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.72 - 3.30i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.82T + 29T^{2} \) |
| 31 | \( 1 + (4.22 - 7.32i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.33 - 7.51i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.24iT - 41T^{2} \) |
| 43 | \( 1 + 0.881iT - 43T^{2} \) |
| 47 | \( 1 + (-5.00 - 8.67i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.76 + 6.52i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.294 + 0.509i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.46 + 0.843i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.50 - 3.17i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 11.3iT - 71T^{2} \) |
| 73 | \( 1 + (13.4 + 7.75i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (8.50 - 4.91i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 1.48T + 83T^{2} \) |
| 89 | \( 1 + (0.389 - 0.224i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 16.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59487427655489835921422320904, −10.15901365966363449030643126086, −9.374769700793961912269002264263, −8.240812792119310877019001951724, −7.66458647210482132830154327732, −5.83740592387745721198428957632, −5.23421626567257506580894469921, −3.87346234955466940436510363251, −3.12932875244933160658443407288, −1.48542839760003206778880574142,
0.52976167806580534428171338633, 2.51017341718511592237955753560, 4.28808550939875482594142178954, 5.35123652496233757333057802438, 5.98904102777278113614481363383, 7.27077440662612667208077212939, 7.61319850436903487936626824033, 8.582771471026640680174678776115, 9.762263055167649146489863710036, 10.24990654200093060798471201562